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Résumé

Sommaire: Les méthodes d’apprentissage de représentations sont essentielles pour traiter
les défis liés aux espaces d’observations complexes dans les problèmes de prise de décision
séquentielle. Récemment, plusieurs approches ont été développées pour apprendre des re-
présentations en apprentissage par renforcement visuel, améliorant ainsi l’efficacité, la géné-
ralisation et les performances. Ce travail de recherche propose une analyse des principales
méthodes utilisées, en examinant leurs mécanismes, avantages et limites. Six classes princi-
pales sont identifiées, analysées et comparées en fonction de leurs spécificités. La taxonomie
présentée a pour objectif de clarifier et de structurer les approches existantes dans le do-
maine, tout en servant de guide pour les chercheurs. Les méthodes d’évaluation de la qualité
des représentations sont également discutées, et des directions de recherche pertinentes pour
élargir l’applicabilité des méthodes à différents contextes sont explorées.

Mots clés: Apprentissage par Renforcement, Apprentissage de Représentations, Apprentissage Profond.
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Abstract

Summary: Representation learning methods are an important tool for addressing the chal-
lenges posed by complex observations spaces in sequential decision making problems. Re-
cently, many methods have used a wide variety of types of approaches for learning meaningful
state representations in visual reinforcement learning, allowing better sample efficiency, gen-
eralization, and performance. This survey aims to provide a broad categorization of these
methods within a model-free online setting, exploring how they tackle the learning of state
representations differently. We categorize the methods into six main classes, detailing their
mechanisms, benefits, and limitations. Through this taxonomy, our aim is to enhance the un-
derstanding of this field and provide a guide for new researchers. We also discuss techniques
for assessing the quality of representations, and detail relevant future directions.

Keywords: Reinforcement Learning, Representation Learning, Deep Learning.
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Prologue

What is State Representation Learning? Why is it useful?

State representation learning (SRL) consists of learning to extract meaningful, task-relevant
information from raw observations in decision-making systems. Consider a simulated au-
tonomous vehicle navigating a busy urban environment, encountering diverse stimuli like
traffic conditions, pedestrians, and changing weather. The role of an SRL algorithm within
a decision-making system consists on distilling complex sensory inputs into compact, struc-
tured representations, prioritizing critical features while filtering out irrelevant noise.

Fig. 1. SRL in action: Raw sensory inputs from a busy environment are distilled into compressed,
task-relevant representations, enabling improved decision-making.

For example, while the color of buildings or the type of roadside trees might be detectable,
these details are irrelevant to navigation. Instead, elements such as the positions and veloc-
ities of vehicles, traffic light statuses, road signs, and pedestrian movements are essential for
effective decision-making. SRL ensures that these crucial variables are emphasized in the
learned representation, enabling the policy to focus on what truly matters.

By reducing the complexity of the input space, SRL enhances learning efficiency, improves
generalization, and increases robustness to environmental variations, such as altered street
layouts or weather conditions. Despite these advantages, identifying and encoding relevant
features is a complex task, often still performed manually in real-world applications like ro-
botics and autonomous driving. SRL aims to automate this process, making it a cornerstone
of scalable, efficient, and adaptive decision-making systems.



1. Introduction

The use of deep reinforcement learning (DRL) for complex control environments has sev-
eral challenges, including the processing of large high-dimensional observation spaces. This
problem, commonly referred to as the “state-space explosion”, imposes severe limitations on
the efficacy of traditional end-to-end RL approaches, which learn actions or value functions
directly from raw sensory inputs, such as pixel observations. As environments grow increas-
ingly complex, these end-to-end methods demonstrate progressively worse data efficiency
and generalization, even in response to minor environmental changes. Overcoming these
limitations is therefore crucial for addressing real-world problems with RL.

In response to these challenges, recent research has focused on decoupling representation
learning from policy learning, treating them as two distinct problems. This strategy has
proven useful for managing complex observations, enabling more efficient learning and im-
proving the generalization of policies across various task settings. Specifically, state repre-
sentation learning (SRL) techniques aim to transform raw, complex observations into struc-
tured, simplified representations that retain essential information for decision-making while
discarding irrelevant details. This approach not only increases the learning efficiency but
also enhances the robustness and adaptability of DRL agents to diverse environments.

Fig. 2. Comparison of End-to-End RL (left) and SRL+RL (right). End-to-end directly maps high-
dimensional inputs to actions, while SRL separates representation learning and policy learning.



Motivation. In recent years, there has been a growth in methods that integrate improved
representation learning into deep RL, using various approaches. However, many works
present inconsistent structuring and categorization of these approaches in their related work
sections, making it challenging to obtain a clear and comprehensive understanding of the
field. To our knowledge, existing surveys can provide valuable information on the topic but
either do not cover the latest developments in the field or focus exclusively on specific classes
of SRL methods (Lesort et al., 2018) (Ni et al., 2024) (Böhmer et al., 2015) (de Bruin et al.,
2018) (Botteghi et al., 2024).

This survey builds on those works by providing an updated and structured analysis of the
different approaches in state representation learning for deep RL, organizing them based
on their principles and effectiveness in different scenarios. Through a detailed taxonomy,
we analyze the inner-workings of these classes, highlighting their potential to improve the
performance, generalization, and sample efficiency of deep-RL agents. We also explore ways
of evaluating the quality of learned state representations, and discuss promising directions for
the field. Overall, this survey can serve as a good resource for researchers and practitioners
looking to familiarize themselves with this field.

Thesis Organization. This manuscript is structured as follows: Section 2 introduces the
foundational concepts of state representation learning (SRL) within the deep reinforcement
learning (DRL) framework. It defines the problem, objectives, and the characteristics of ef-
fective state representations, providing a formal basis for understanding subsequent sections.
Section 3 presents the core taxonomy of SRL methods, categorizing them into six primary
classes, while elaborating on their mechanisms and highlighting notable work from the litera-
ture. Section 4 addresses the critical aspect of evaluation, discussing benchmarks and metrics
used to assess the quality and effectiveness of state representations, including their impact
on sample efficiency, generalization, and robustness. Lastly, Section 5 explores promising
directions for advancing SRL in DRL, such as multi-task learning, leveraging pre-trained
visual models, and integrating multi-modal inputs.
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2. Problem Definition

2.1 Formalism

Reinforcement Learning (RL) is typically modeled as a Markov Decision Process (MDP),
characterized by the tuple ⟨S,A, P, R, γ⟩. Here, S denotes the state space, and A denotes the
action space. The transition probability function P : S × A → ∆(S) defines the probability
P (s′|s, a) of transitioning from state s to state s′ given action a, representing the environment
dynamics. The reward function R : S × A → R specifies the immediate reward R(s, a)
received after taking action a from state s, providing feedback on the action taken.

The objective of an RL agent is to learn a policy π : S → A that maximizes the ex-
pected cumulative discounted reward. Using π, the agent progressively generates experi-
ences (s, a, r, s′), which can be organized into a trajectory τ . For each trajectory τ , the
return Gt represents the total accumulated reward from time step t onwards. It is expressed
as Gt =

∑∞
k=0 γ

krt+k, where γ ∈ [0, 1) is the discount factor that prioritizes immediate
rewards over future ones.

To evaluate how good a particular state or state-action pair is, we define value functions. The
state value function V π(s) under policy π is the expected return starting from state s and fol-
lowing policy π, given by V π(s) = E[Gt|st = s]. Similarly, the action-value function Qπ(s, a)
represents the expected return starting from state s, taking action a, and subsequently fol-
lowing policy π, defined as Qπ(s, a) = E[Gt|st = s, at = a]. Therefore, the objective of the
agent can now be expressed as finding an optimal policy π∗ that maximizes Qπ(s, a).



2.2 Partial Observability

In many RL settings, full observability is rare. For example, in robotics, sensors might
not capture all relevant state factors for optimal decision making in one time-step of data.
A POMDP, or partially observable MDP, generalizes the notion of a MDP by accounting
for situations where the agent does not have direct access to the full state s ∈ S of the
environment, hence needing to rely on past observations to infer the current state.

Recurrent neural networks (RNNs) are commonly employed to address this partial observ-
ability issue, leveraging their hidden state to retain and process information from previ-
ous time steps. Another way to handle this is by concatenating the last n observations
(ot, ot−1, ..., ot−n+1) to approximate a sufficient statistic for decision-making, thus mitigat-
ing the effects of partial observability. For example, agents trained on the ALE benchmark
(Bellemare et al., 2013) often employ this technique, known as ‘frame stacking’.

In this survey, a POMDP framework is adopted and defined as M = ⟨O,A,P ,R, γ⟩, where
O represents the observation space. The other components mirror those of an MDP defined
above, except that the agent now operates on observations O instead of states S. An end-
to-end RL policy π : O → ∆(A) will now map observations to action distributions. This
framework is chosen over MDPs to address practical concerns: in real-world scenarios, agents
rarely have access to the full environment state and instead rely on partial, high-dimensional
observations that may fail to uniquely identify states. Unlike MDPs that assume full observ-
ability, POMDPs account for partial observability, making them often more realistic.

Fig. 3. Fully Observable SRL processes a single or stacked frames with all the information required
for optimal decision-making, while Partially Observable SRL addresses missing information using
memory modules (e.g., RNNs) or history compressors integrating past observations and actions.
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In addition to POMDPs, two other decision-making frameworks not addressed here can be
relevant to the subject: Contextual Decision Processes (CDPs) (Krishnamurthy et al., 2016)
(Jiang et al., 2017) and Block MDPs (BMDPs) (Du et al., 2019). CDPs extend MDPs and
POMDPs as a unified framework for reinforcement learning with rich observations, where
agents make decisions based on rich features (context) for optimizing long-term rewards.
Block MDPs differ by assuming that each observation corresponds uniquely to a latent state,
ensuring that observations maintain Markovian properties. This allows for optimal repre-
sentations to be inferred directly from observations without requiring additional memory or
history, assuming the right encoder.

2.3 Deep Reinforcement Learning

Deep reinforcement learning (DRL) differs from traditional RL by utilizing deep neural
networks to approximate value functions (or policies), either from high-dimensional inputs,
or from encoded latent states. This becomes desirable when the state space is large or
continuous, which is not well-suited for methods that rely on representing state-action pairs
individually in a lookup table, known as tabular reinforcement learning.

DRL methods can be broadly categorized into three kind of approaches: value-based, policy-
based, and actor-critic methods. Value-based methods, such as Deep Q-Networks (DQN)
(Mnih et al., 2013), use a neural network to approximate the action-value function Q(s, a).
Policy-based methods, such as REINFORCE (Williams, 1992), directly parameterize the
policy π(a|s; θ) and optimize it using gradient ascent on the expected cumulative reward.
Actor-Critic methods combine the strengths of value-based and policy-based approaches as
they maintain two networks: the actor, which updates the policy π(a|s; θ), and the critic,
which evaluates a desired value function Q(s, a) or V (s).

2.4 State Representation Learning

The traditional end-to-end approach, which directly maps observations to actions, led to im-
pressive results (Mnih et al., 2013). However, this approach becomes increasingly challenging
as the complexity of the environment increases, which is why more efforts are directed to-
wards learning better representations. Representation learning by itself can be defined as
the process of automatically discovering features from raw data that are most useful for a
task (Bengio et al., 2012). Although representation learning for deep-RL can be divided into
state and action representation learning, the former will be the focus of this survey.

6



Problem: We define the objective of state representation learning (SRL) for reinforcement
learning (RL) as learning a representation function ϕn : O0 × O1 × · · · × On → X , pa-
rameterized by θϕ, which maps n-step observation sequences to a representation space X ,
thereby allowing us to define policies ΠX over this reduced space. This encoder enables
either a policy network ψπ to compute actions at = ψπ(xt), or a value network ψV to com-
pute values vt = ψV (xt), based on the representation xt = ϕ(ot), instead of directly using
high-dimensional observations. The representation xt is a vector in Rd, where d is the chosen
dimension of the representation space X .

Fig. 4. Illustration of State Representation Learning (SRL) for RL, where a parametrized trans-
formation ϕ is learned, mapping sequences of observations to representations. Two configurations
are presented depending if a value-based RL approach is used (right) or a policy-based one (left).

However, not all representation functions are useful to obtain; the goal is to learn an encoder
ϕ that captures the essential characteristics of effective state representations, as reviewed
in the next section. Learning a good encoder simplifies the input space into a compact
and relevant representation xt, thereby (1) improving sample efficiency and performance by
facilitating the function approximation process performed by the policy/value network; (2)
enhancing generalization as learning a policy/value network from representations avoids the
overfitting issues seen with high dimensional, unstructured, and noisy observation spaces.

In the presented taxonomy, the focus will be mostly on methods that learn state representa-
tions within a model-free online setting, where agents learn representations and policies in
real-time through interactions with the environment without using an explicit model of the
environment for taking actions. This differs from model-based RL, which involves learning
a model of the environment’s dynamics that is used for planning, enabling higher sample-
efficiency at the cost of higher complexity. The offline pre-training of representations is also
explored in section 5, where agents learn representations from fixed experience datasets.

7



Setting Description
Pre-trained Joint-training Representations are learned either before reinforcement learning

begins or simultaneously with RL training objectives.
Online Offline Learning occurs in real-time through interactions with the envi-

ronment or from pre-collected datasets.
Coupled Decoupled Encoder parameters are optimized jointly with policy/value ob-

jectives or independently of them.
Reward-based Reward-free Representations are influenced by task rewards or focus on envi-

ronment dynamics and visual features.
Single-task Multi-task Representations are learned for a specific task or shared across

multiple tasks to capture common structures.
Model-free Model-based Representations are directly used for decision-making or integrated

into a model of the environment for planning.

Table 1. Overview of the different settings for State Representation Learning in RL.

2.5 Defining Optimal Representations

A good starting point is to clearly define the ideal objectives pursued by the state represen-
tation learning methods studied in this survey. Specifically, we begin by asking: What are
the characteristics that constitute effective state representations?

An optimal representation space can be defined by its ability to efficiently support policy
learning for a set of downstream tasks. The learned manifold should be constrained to a
low dimensionality, while remaining sufficiently informative to enable the learning of an op-
timal policy (or value function) using limited-capacity function approximators. If a manifold
has too much information, it can slow down the learning process and hinder convergence
to the optimal policy. Alternatively, a manifold with insufficient information will prevent
convergence to the optimal policy (Abel, 2022). Therefore, the ideal latent manifold strikes
a balance between information capacity and simplicity.

Structure: The learned representation space should be structured to encode task-relevant
information while remaining invariant to noise and distractions. This means that points
within a neighborhood around a representation xt should exhibit a high degree of task-
relevant similarity, which gradually diminishes as the distance from this point increases.
These similarities can be encoded in the representation space using information or distances
derived from observation features, environment dynamics, rewards, etc. Additionally, the
encoder should remain invariant to noise, distractions, or geometric transformations that do
not alter the true underlying state of the decision process.
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Fig. 5. Illustration of some optimal state representation properties. The top section demonstrates
invariance to noise, distractions, and masking in the representation space, preserving task-relevant
information. The bottom section illustrates disentanglement, where changes in individual factors
ideally lead to localized latent impacts, ensuring robust and interpretable representations.

Continuity: A good latent structure should ideally ensure strong (Lipschitz) continuity
of the value function within nearby representations—an important property that governs
how smoothly the value function changes across the representation space (Le Lan et al.,
2021). Points that are close in this space should correspond to relatively similar optimal
value predictions, even if they are far apart in the input space. Strong continuity enhances
learning efficiency by simplifying the function approximation process performed by the value
network ψV . Furthermore, it promotes better generalization of the value function to unseen
but nearby states. This concept of continuity also extends to the policy network ψπ, ensuring
that changes in the action distribution occur smoothly within the representation space.

9



Sparsity: Sparse representation learning for deep-RL refers to ways of acquiring represen-
tations from observations where only a small subset of the latent neurons are active at any
given time. Enforcing sparsity constraints on the representations can allow the identification
of the most relevant aspects of high-dimensional observations as it encourages the input to
be well-described by a small subset of features. This enhances computational efficiency by
reducing the number of active features, leading to simpler representations. Also, this helps
avoid overfitting by focusing on the most relevant features, promoting better generalization.
Sparse representations also improve interpretability by making it easier to understand which
features are driving the agent’s decisions.

Disentanglement: Acquiring disentangled state representations is useful for avoiding learn-
ing spurious correlations that can mislead RL agents. Disentanglement approaches separate
the factors of variation in observations, ensuring independent and robust representations.
This improves the agent’s ability to generalize and adapt to new environments as a change
in one observation factor only affects a subset of features in the representation, allowing the
remaining features to stay stable and be used for decision-making. More on disentangled
representation learning methods can be found in section (3.3).

Previous works have sought to define characteristics of effective representations and abstrac-
tions for RL. According to Wang et al. (2024b), optimal representations should exhibit high
capacity, efficiency, and robustness. Abel (2022) identifies three essential criteria for state
abstractions in RL: efficient decision-making, solution quality preservation, and ease of con-
struction. These criteria stress the importance of balancing compression with performance
to facilitate effective learning and planning in complex environments. Other relevant works
that discuss the characteristics of good state representations for RL include (Böhmer et al.,
2015), (Lesort et al., 2018), and (Botteghi et al., 2024). Similarly, definitions of optimal
representations in the broader context of self-supervised learning (SSL) can often overlap
with those needed for control, making research in that area valuable for RL as well.
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3. Taxonomy of Methods

3.1 Overview

We categorize the representation learning methods into six distinct classes, which are pre-
sented in table 2. For each class, we provide a definition, details, benefits, limitations, and
some examples of methods. While there are likely other methods in each class, the goal
is not to be exhaustive, but rather to focus on the classes themselves. Additionally, some
methods may be classified as hybrid, combining techniques from multiple classes.

Class Description

Metric-based Shape the representation space through a task-relevant distance metric be-
tween embeddings. They enhance generalization and efficiency by abstract-
ing states with similar information, reducing complexity.

Auxiliary Tasks Enhance the primary RL task with other simultaneous predictions that
indirectly shape representations. These require additional parameters, but
provide accelerated learning on the main task.

Augmentation Leverage data augmentation for learning invariances to geometric and pho-
tometric transformations of observations. They do not directly learn rep-
resentations, but enhance efficiency and generalization.

Contrastive Shape the representation space by learning separate representations for
different observations, and similar ones for related observations. Temporal
proximity and/or transformations are used for establishing similarities.

Non-Contrastive Construct their representation space by only minimizing the distance be-
tween the representations of similar observations. Unlike related contrastive
approaches, no negative pairs are used during training.

Attention-based Learn attention masks (Bahdanau et al., 2015) for computing scores that
highlight important features of the input, helping agents disregard irrele-
vant details and increase the interpretability of decision-making.

Table 2. Overview of the classes presented in the taxonomy.



3.2 Metric-based Methods

Definition: Metric-based methods aim to structure the embedding space by using a metric
that captures task-relevant similarities between state representations. By mapping function-
ally equivalent states to similar points in the latent space, these methods can enhance sample
efficiency and improve policy learning. For instance, if two different visual observations in a
game lead to the same downstream behavior and yield the same reward, they can be mapped
to the same latent state. The environment’s reward structure often plays a critical role in
determining the task-relevance of the similarity metric used.

Details: The observation encoder, denoted as ϕθ : O → Rn with parameters θ, maps
observations to an embedding space X where distances d̂(ϕθ(oi), ϕθ(oj)) reflect some task-
relevant similarities. For example, the distance metric d̂ could be the L2 norm, and the metric
could be bisimulation (Ferns et al., 2012), which is introduced below. The representation
learning objective can then be formalized as minimizing the expected squared difference
between the embedding space distance d̂(ϕθ(oi), ϕθ(oj)) and a metric dπ(oi, oj) defined over
observations (Chen & Pan, 2022). Therefore, the loss can be formally written as follow:

L(ϕθ) = E
[(
d̂(ϕθ(oi), ϕθ(oj)) − dπ(oi, oj)

)2
]
. (1)

Fig. 6. Metric-based methods shape the representation space to capture task-relevant information.
Representations with similar functional outcomes (e.g., shooting a basketball in the right trajectory)
have minimal distance d1, while representations with different outcomes (e.g., shooting a basketball
in the wrong trajectory) are separated by larger distances d2, hence d1 ≪ d2.
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Benefits: Metric-based methods offer strong theoretical guarantees by bounding the differ-
ences in value function outputs for pairs of embedded states, ensuring that states close in
the metric space exhibit similar optimal behaviors. This is formalized as |V ∗(si) −V ∗(sj)| ≤
d(si, sj), which is key to improving sample efficiency and generalization, as it allows the
agent to treat behaviorally equivalent states similarly. Additionally, these methods lever-
age task-relevant MDP information, such as rewards and transition dynamics, to shape the
latent state space, making them particularly effective in abstracting away irrelevant visual
distractions in more complex environments (Zhang et al., 2020). Also, some metric-based
methods can avoid the need for training additional parameters, offering a computationally
efficient approach (Castro et al., 2021).

Limitations: The operations involved in certain metrics, such as the Wasserstein distance
used in bisimulation, are known to be computationally challenging (Castro, 2020a). This can
lead to the need for approximations or relaxations, which can weaken the original theoretical
guarantees (Chen & Pan, 2022). Furthermore, these methods typically require access to
task-specific MDP information, which may not always be readily available or easy to obtain
in real-world settings. In fact, even if rewards are available, real-world settings are often
characterized by sparse reward structures, which can create latent instability or even em-
bedding collapses in metric-based methods. Embedding explosion is another issue that can
affect these methods (Kemertas & Aumentado-Armstrong, 2021). Finally, these methods
are impacted by the non-stationary nature of the policy during training, which causes con-
tinuous updates to the embedding space and metrics, therefore favoring latent instabilities
and hindering consistent performance compared to some other classes.

Categorization: Various metrics can be defined to quantify the similarity between states,
each influencing how state representations are learned and aggregated.

a) Bisimulation Metrics

Bisimulation metrics, originally introduced for MDPs by Ferns et al. (2012), offer a way to
quantify behavioral similarity between states. By measuring distances between states based
on differences in both their rewards and transition dynamics, it allows state aggregation while
preserving crucial information needed for effective policy learning. Formally, the bisimulation
metric d(xi, xj) between latent states xi and xj is updated using the following recursive rule:

Tk(d)(xi, xj) = max
a∈A

[(1 − c) · |R(xi, a) −R(xj, a)| + c ·Wd(P (·|xi, a), P (·|xj, a))] . (2)
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In this formulation, Tk(d) represents an operator that updates the distance function d(xi, xj),
where c ∈ [0, 1] is a parameter controlling the balance between the importance of reward dif-
ferences and transition dynamics. The term Wd(P (·|xi, a), P (·|xj, a)) represents the Wasser-
stein distance (or Kantorovich distance) between the next-state distributions induced by the
transitions from states xi and xj under action a.

Intuitively, Wd can be seen as quantifying the distance between two probability distributions,
which corresponds in this case to the next-state distributions of (xi, xj). More precisely, the
Wasserstein distance is known to measure the cost of transporting one probability distribu-
tion to another, and is formalized as finding an optimal coupling between two probability
distributions that minimises a notion of transport cost associated with the base metric d (Vil-
lani, 2008). By iteratively applying the operator Tk(d), the bisimulation distance d(xi, xj)
converges to a fixed point d∗, yielding the final metric between states that minimizes the loss.
This iterative process that progressively shapes the representation space ensures that states
with similar rewards and transition dynamics are mapped closer in the representation space,
while dissimilar states are mapped further apart. Details on the convergence, the formalism
of this operator and the space it operates on can be found in Castro et al. (2021).

Methods: Several methods integrate the bisimulation metric for learning more compact
and generalizable representations in reinforcement learning. DBC (Zhang et al., 2020) uses
the bisimulation metric to map behaviorally similar states closer in latent space, improving
robustness to distractions, but is susceptible to embedding explosions/collapses, and relies
on the assumption of Gaussian transitions for metric computation. Kemertas & Aumentado-
Armstrong (2021) addresses these issues by (1) adding a norm constraint to prevent embed-
ding explosion and (2) using intrinsic rewards plus latent space regularization through the
learning of an IDM as an auxiliary task to prevent embedding collapse. The second point is
particularly relevant in sparse or near-constant reward settings, where early similar trajec-
tories can incorrectly lead the encoder to assume bisimilarity. More recent works addressing
this sparse-reward challenge for bisimulation-based methods include Chen et al. (2024b) and
Anonymous (2024). Castro et al. (2021) resolves some computational limitations of tradi-
tional bisimulation metrics with a scalable, sample-based approach that removes the need for
assumptions like Gaussian or deterministic transitions Zhang et al. (2020) Castro (2020b),
and explicitly learns state similarity without requiring additional network parameters.

14



b) Lax Bisimulation Metric

The lax bisimulation metric (Taylor et al., 2008) extends this concept to state-action equiva-
lence by relaxing the requirement for exact action matching when comparing states, allowing
both MDPs to have different action sets, thus providing greater flexibility. For example,
Rezaei-Shoshtari et al. (2022) demonstrated the use of this metric for representation learn-
ing, which led to improved performance when learning from pixel observations. Le Lan
et al. (2021)’s work also highlights why the lax bisimulation metric can provide continuity
advantages over the original bisimulation metric.

c) Related Metrics

Several alternative metrics have been proposed to shape the representation space of RL
agents. For instance, a temporal distance metric was used in Florensa et al. (2019) and Park
et al. (2024b), which captures the minimum number of time steps required to transition
between states in a goal-conditioned value-based setting. In Rudolph et al. (2024), their
action-bisimulation metric replaces the reward-based similarity term of traditional bisimula-
tion with a control-relevant term obtained by training an IDM model, making the approach
reward-free. Agarwal et al. (2021a) introduced the Policy Similarity Metric (PSM), which
replaces the absolute reward difference in bisimulation with a probability pseudometric be-
tween policies and has been shown to improve multi-task generalization.

d) Impact of distance d̂ on Representations

The choice of how distances between representations are measured often influences the actual
nature of the learned representations. For example, the L1 distance (1), based on absolute dif-
ferences, promotes sparsity by applying a constant penalty that drives smaller values toward
zero, emphasizing distinct features. This can be useful when only a few key features matter
in distinguishing states. In contrast, the L2 distance (2), which uses squared differences,
promotes smoother representations by spreading the error across all components, reducing
large individual components while retaining contributions from smaller ones. This is more
effective when information from all features is relevant, even if some contributions are minor.
Some methods instead use orientation-based metrics, such as cosine similarity (4) or angular
distance (3), which can be advantageous in high-dimensional spaces where direction is more
significant than magnitude, or where specific properties, such as non-zero self-distances, are
desirable (Castro et al., 2021). They can however come with drawbacks, such as poten-
tial embedding norm growth and convergence slowdowns when optimizing cosine similarity,
limiting effectiveness without additional normalization (Draganov et al., 2024).
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3.3 Auxiliary Tasks Methods

Definition: This category is composed of methods that enhance the primary learning task
(RL) by having agents simultaneously predict additional environment-related outputs. This
is done by splitting the representation part of an agent into n different heads, each with
their own set of weights and dedicated task. During training, the errors from these heads are
propagated back to the shared encoder ϕ, guiding the learning in conjunction with the main
objective. The role of these supplementary tasks is to help agents enrich their representations
with additional auxiliary signals coming from the same amount of data.

Fig. 7. The representation xt of an RL agent is used to make additional predictions on auxiliary
task function(s). These predictions are used to improve the representation itself.

Details: Let Lprimary(θ) denote the loss associated with the primary RL objective. Auxiliary
tasks are defined as additional functions ψauxi

(xt) that, with their own set of parameters
θAux = {θaux1 , θaux2 , ..., θauxn}, process the representation xt to output a set of real values
with task-dependent dimensions. The loss for each auxiliary task i is represented as Li(θauxi

),
and the overall auxiliary task loss is the sum of all task losses. The combined objective to
optimize is then (3), with λi as the weighting factor(s) between primary and auxiliary tasks.

Lmethod(θ, θAux) = Lprimary(θ) +
n∑
i=1

λiLi(θauxi
) (3)

Benefits: Auxiliary tasks for RL can enhance the learning process by utilizing additional
supervised signals from the same experiences. When faced with environments with sparse
rewards, auxiliary tasks can still provide some degree of learning signals for shaping the
representation, which increases the learning efficiency of an agent. They can also serve
as regularizers, enhancing generalization and reducing overfitting during learning. Finally,
they can promote better exploration by guiding the agent toward states that provide more
informative signals for the auxiliary tasks.
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Limitations: However, a downside of using auxiliary tasks to improve representations is the
lack of theoretical guarantee when it comes to whether it is actually benefiting the learning
process of the main RL objective or not (Du et al., 2020). Defining precisely what makes a
good auxiliary task is also in itself a hard problem (Lyle et al., 2021) (Rafiee et al., 2022).
Finally, choosing the auxiliary weight(s) that balance(s) the importance of the auxiliary
task(s) compared to the main task requires the right tuning of hyper-parameters.

Categorization: In the following sections, we explore the inner mechanisms of some auxil-
iary tasks that are frequently employed to learn good state representations in RL.

a) Reconstruction-based Methods

Definition: These methods aim to improve state representations by learning to reconstruct
original observations ot using a decoder ôt = ψrecon(xt) that takes as input the encoded rep-
resentations xt = ϕ(ot). This reconstruction process can be performed using simple autoen-
coders (AE), where the objective is to minimize the reconstruction error between the original
observation ot and its predicted reconstruction ôt. Additionally, it can be achieved using vari-
ational autoencoders (VAEs) (Kingma & Welling, 2022), where an additional regularization
objective encourages the latent variables to follow a predefined distribution (commonly a
Gaussian), promoting better generalization and disentanglement of the representations.

Purpose: These methods enforce the latent space to capture the essential features needed for
accurate reconstruction, promoting the learning of compact, denoised representations. This
helps the agent to focus on key task-relevant information, improving generalization across
environments and enhancing sample efficiency in high-dimensional spaces. Mask-based latent
reconstruction avoids the need to reconstruct full observations by focusing the reconstruction
only on latent variables, thereby discarding irrelevant features from observational space.

Fig. 8. Reconstruction as an auxiliary task: The encoder learns compact latent representations
by ensuring that the original observation can be reconstructed from the representation.
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Failure Cases: A common failure arises when reconstructing observations that contain sig-
nificant irrelevant noise or distractions. In such cases, especially when task-relevant features
occupy only a small portion of the observation, the model may learn to preserve unnecessary
details, leading to poor state representations that degrade learning performance.

Disentangled Representations: Reconstruction-based methods can also be used to
achieve disentangled representations, where the latent space X is ideally structured into
independent subspaces Xi, each capturing a distinct factor of variation vi from the observa-
tion space. Methods like β-VAE (Higgins et al., 2016) enforce stronger constraints on the
latent space than regular VAEs in order to promote disentanglement, ensuring that changes
in one factor (e.g., object color) do not affect others (e.g., arm position), thus enhancing
the robustness and adaptability of learned representations in complex environments. More
related methods include (Higgins et al., 2017) (Thomas et al., 2018) (Kabra et al., 2021)
(Dunion et al., 2023) (Dunion et al., 2024) (Dunion & Albrecht, 2024).

b) Dynamics Modeling Methods

Definition: Dynamics modeling methods use latent forward and inverse models as auxiliary
tasks to implicitly improve state representation learning. A latent forward dynamic model
(FDM) predicts the next representation x̂t+1 = f(xt, at;ϕfwd) from the current representation
xt and action at, while a latent inverse dynamic model (IDM) predicts the action ât =
g(xt, xt+1;ϕinv) that caused a transition from xt to xt+1.

Purpose: FDMs help the agent learn a representation that captures environment dynamics,
ensuring that the latent space encodes the essential transition information needed to predict
future states. IDMs ensure that the representations encode information to recover the action
that led to the state change, focusing on controllable aspects of the environment.

Failure Case: A failure case of using FDMs occurs when the transition model lacks a
grounding objective, such as reward prediction (Tomar et al., 2021). In such cases, the
model can collapse by mapping all observations to the same representation, minimizing the
loss trivially, and failing to learn meaningful representations, especially if the critic’s signal
becomes noisy due to distractions.

k-step predictions: Using k-step predictions, where the model predicts multiple future
representations instead of just one at each step, can further enhance the representation
by capturing longer-term dependencies and improving performance across time (Schwarzer
et al., 2020). For latent IDMs, predicting the first action at on a trajectory from ot to ot+k
can also ensure positive properties for control Lamb et al. (2023) (Islam et al., 2023a).
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Fig. 9. Dynamics modeling as an auxiliary task: Forward Dynamics Models (FDMs) predict future
representation(s) based on the current representation and action, capturing environment dynamics.
Inverse Dynamics Models (IDMs) predict action that caused transitions between representations,
emphasizing controllable features.

Hierarchical Models: McInroe et al. recently introduced a hierarchical approach utilizing
multiple latent forward models (FDMs) to capture environment dynamics at varying tempo-
ral scales. Each level in the hierarchy learns a distinct FDM that predicts the representation
xt+k k-steps ahead based on previous representations and actions. Additionally, a learned
communication module facilitates the sharing of higher-level information with lower-level
modules. When compared on a suite of popular control tasks, it achieves noticeable perfor-
mance and efficiency gains over baseline approaches. Importantly, this differs from predicting
all k next representations xt+1 to xt+k.

c) More Auxiliary Tasks

A wide variety of additional predictions can be used to support representation learning in
RL. Here, we highlight a few additional examples. (i) Reward Prediction (Yang et al.,
2022) (Zhou et al., 2023) involves predicting the immediate reward rt based on the current
state xt and action at, guiding the agent to encode task-relevant features essential for value
estimation. This task is especially useful in non-sparse reward settings, where it serves as a
discriminator of critical information and benefits from being combined with latent modeling
to capture relevant dynamics. (ii) Random General Value Functions (GVFs) (Zheng et al.,
2021) predict random features of observations based on random actions, generating varied
signals that enhance state representations, even when the main RL task is detached through
a stop-gradient. (iii) Termination Prediction (Kartal et al., 2019) anticipates whether a state
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will lead to the end of an episode, helping the agent recognize conditions for task completion
and improving decisions around critical states. (iv) Multi-Horizon Value Prediction (Fedus
et al., 2019) involves predicting value functions over multiple future horizons, allowing the
agent to account for both short and long-term consequences, supporting more balanced and
informed decision-making.

d) Precision – Auxiliary Tasks vs Auxiliary Losses

We define auxiliary tasks as something different than what is called auxiliary losses in the
literature. Auxiliary losses refers to any loss optimized jointly with the main RL objective,
which is something done in methods belonging to most classes here. However, we specifically
define auxiliary tasks as additional predictions made during training, using the representation
xt as input, which indirectly enhance the quality of xt. By definition, those tasks require
additional parameters for each task-head, unlike auxiliary losses.
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3.4 Data Augmentation Methods

Definition: Data augmentation (DA) methods represent a class of techniques that enhance
sample-efficiency and generalization capabilities of RL agents through the manipulation of
their observations. By applying geometric and photometric transformations to their inputs,
such as rotations, translations, and color changes, these methods enforce invariance to irrel-
evant changes in observations, enabling agents to focus on essential features.

Details: These methods normally introduce an observation transformation function T that
generates augmented observations õ based on the original observations o, where õ = T (o).
The transformation T is chosen such that it preserves the essential task-relevant properties
of o. A form of explicit and/or implicit regularization is then used to enforce some degree
of Q-invariance and/or π-invariance. Formally, the invariance of a Q-function with respect
to a transformation fT is defined as Q(s, a) = Q(fT (s), a) for all s ∈ S, a ∈ A. Similarly, a
policy π is considered invariant to fT if π(a | s) = π(a | fT (s)) for all s ∈ S, a ∈ A.

Fig. 10. Implicit D.A (left) augments observations directly used to train the policy and/or value
network, promoting robustness through diversity without explicit constraints. Explicit D.A (right)
augments observations supplemented by regularization penalties that enforce Q/π invariances.

Two type of strategies can be used to enforce invariance: (1) Implicit regularization applies
transformations directly to the input data during the training process, using both original and
transformed observations to train the network to generalize across these variations (Hu et al.,
2024); (2) Explicit regularization, on the other hand, achieves invariance by modifying the
loss functions to ensure that both the policy (actor) and the value estimates (critic) remain
unchanged by the transformations fT . This is done by incorporating additional terms in the
loss functions that measure and penalize discrepancies between outputs, such as Q-values or
action distributions, for both original and transformed inputs.
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Benefits: DA-based methods enhance sample efficiency by diversifying training samples, en-
abling robust policy learning with fewer interactions and reducing overfitting. They improve
generalization by simulating visual variations, reducing sensitivity to distribution shifts and
aiding adaptation to new settings. Crucially, they preserve plasticity (Ma et al., 2024), essen-
tial for non-stationary objectives, while remaining simple and effective across environments.

Limitations: However, these kinds of approaches don’t directly structure the representation
space or incorporate task-specific information, making them fundamentally limited in cap-
turing task-relevant features. Additionally, strong augmentations can introduce noise that
disrupts training (e.g., high variance in Q-value estimates), and augmentations non-adapted
to a task may affect the learning of critical features, reducing performance.

Data Augmentations: Four common augmentations applied to observations in DRL are:
(i) Random Cropping, which modifies the image borders without altering central objects; (ii)
Color Jittering, which adjusts brightness, contrast, and saturation to mimic varying lighting
conditions; (iii) Random Rotation, involving slight image rotations that do not affect task
orientation; and (iv) Noise Injection, where stochastic noise is added to images to simulate
sensory disturbances or camera imperfections Ma et al. (2022). Certain augmentations, such
as random cropping, have often demonstrated greater benefits compared to others (Laskin
et al., 2020), although their effectiveness can be highly task-dependent.

Fig. 11. Common observation augmentations in RL. Geometric transformations alter spatial prop-
erties like cropping or flipping, while photometric transformations alter visual features such as
lighting and color. Other augmentations also exist, such as cropping or noise injection.
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Methods: Data-regularized Q (DrQ) (Kostrikov et al., 2020) enhances data efficiency and
robustness by integrating image transformations and averaging the Q target and function over
multiple transformations, thereby reducing the variance in Q-function estimation. Building
on DrQ, DrQ-v2 (Yarats et al., 2021) introduces improvements like switching from SAC to
DDPG and incorporating n-step returns, along with more sophisticated image augmentation
techniques such as bilinear interpolation to further enhance generalization and computa-
tional efficiency. RAD (Laskin et al., 2020), on the other hand, focuses on training with
multiple views of the same input through simple augmentations, improving efficiency and
generalization without altering the underlying algorithm.

DrAC (Raileanu et al., 2021) was introduced as an explicit regularization method that auto-
matically determines suitable augmentations for any RL task and uses regularization terms
for both the policy and value functions, enabling DA for actor-critic methods. (Hansen
et al., 2021) proposed a data augmentation framework for off-policy RL called SVEA, which
improves the stability of Q-value estimation. Addressing some limitations of SVEA, SADA
(Almuzairee et al., 2024) enhances both stability and generalization by systematically aug-
menting both actor and critic inputs, allowing for a broader range of augmentations.

Some methods also relies on more unique techniques: (Li et al., 2024) propose normaliza-
tion techniques for improved generalization, acting as latent data augmentations by altering
feature maps instead of raw observations. To stabilize policy/Q-estimation outputs on aug-
mented observations even further, Yuan et al. (2022a) proposed to identify task-relevant
pixels with large Lipschitz constants (by measuring the effect of pixel perturbations on out-
put decisions), and then to augment only the task-irrelevant pixels, which preserve critical
information while benefiting from data diversity. Inspired by Fourier analysis in computer
vision, Huang et al. (2022) introduced frequency domain augmentations, which provide a
task-agnostic plug-and-play alternative to traditional spatial domain DA methods.

Precision: Although surveyed here, DA methods do not necessarily learn state representa-
tions via an encoder but can still be viewed as a class of representation learning techniques
for improving efficiency and generalization in RL. Furthermore, the class focuses solely on
observation augmentations; however, other forms of augmentations exist, such as transition
or trajectory ones, which can also enhance various learning aspects (Ma et al., 2022) (Yu
et al., 2021). For more details on data augmentations for reinforcement learning, the studies
made by Hu et al. (2024) and Ma et al. (2022) are good resources to refer to.
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3.5 Contrastive Learning Methods

Definition: Contrastive learning methods aim to learn effective representations for deep RL
agents by contrasting positive pairs (similar data points) against negative pairs (dissimilar
data points). This approach utilizes a contrastive loss function that encourages the model
to increase the similarity of representations derived from positive pairs while simultaneously
decreasing the similarity of representations from negative ones. These methods can leverage
different strategies to define positive pairs, such as using data augmentations or exploiting
the temporal structures in the data.

Details: The InfoNCE loss (van den Oord et al., 2018b) is a widely used contrastive loss for
learning representations, both in vision-based SSL and RL specifically. It can be defined as:

LNCE = −E(o,o+,{o−
i })

[
log exp(sim(ϕθ(o), ϕθ(o+)))

exp(sim(ϕθ(o), ϕθ(o+))) +
∑N

i=1 exp(sim(ϕθ(o), ϕθ(o−
i )))

]
. (4)

In the objective above, o represents an observation (anchor), o+ is a positive sample—
typically a similar observation to o, generated through data augmentations like cropping,
rotation, or jittering—and {o−

i }Ni=1 are negative samples, which are dissimilar observations
selected randomly or based on temporal differences. The encoder ϕθ, as usual, maps obser-
vations into a representation space. The similarity between two representations, sim(x, x′),
is often measured using cosine similarity or the dot product.

Intuitively, optimizing this loss encourages the model to make the numerator (similarity
between o and o+) as large as possible relative to the denominator (which sums the simi-
larities between o and each negative sample). This pushes representations of positive pairs
closer together and separates representations of negative pairs, ensuring that observations
with similar underlying features cluster in the representation space, while dissimilar observa-
tions are spread apart. Consequently, this helps the reinforcement learning agent to better
distinguish between important and irrelevant aspects of the environment.

Categorization: Contrastive methods can be categorized based on how they generate posi-
tive and negative pairs. Instance-discriminative contrastive learning typically leverages data
augmentation, creating variations of the same observation to form positive pairs, while treat-
ing different observations in the batch as negatives. In contrast, temporal contrastive learning
focuses on leveraging the sequential nature of the data, treating observations from nearby
time steps as positive pairs, which captures temporal consistency in dynamic environments
and distinguishes them from temporally distant observations as negatives.
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Fig. 12. Two contrastive learning frameworks: (1) Instance-discriminative contrastive learning
with data augmentation (left), and (2) Temporal contrastive learning (right).

Benefits: Contrastive methods structure the representation space informatively, either by
creating invariance to non-task-relevant variations in observations and/or by making the
representation space temporally coherent and smooth. This invariance aspect is especially
valuable in complex environments, where different observations might not alter the funda-
mental true state st, thus aiding in maintaining consistent decision-making processes.

Limitations: Scaling contrastive methods to high-dimensional spaces is challenging, as the
number of contrastive samples required to learn meaningful representations may grow expo-
nentially with the input space’s dimension (LeCun, 2022). Additionally, finding appropriate
negative pairs is crucial: if negatives are too easy, learning plateaus without gaining useful
insights, while overly difficult negatives can hinder learning. Contrastive methods therefore
require high batch sizes to avoid biased gradient estimates caused by limited negative sam-
ples within a batch (Chen et al., 2022). Finally, they typically do not leverage reward signals,
which can restrict the structuring of the latent space when such information is available.

a) Instance-Discriminative Contrastive Learning

CURL (Srinivas et al., 2020) is a popular approach that make uses of a contrastive loss
to ensure that representations of augmented versions of the same image are closer together
than representations of different images, which enforces some beneficial invariance properties
in the representation space that improve generalization and efficiency in visual RL tasks.
To advance this direction further, future methods could integrate ideas similar to (Wang
et al., 2024c), where their notion of data augmentation consistency ensures that stronger
augmentations push an augmented sample’s representation further from the original than
weaker ones, structuring the representation space more informatively.
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b) Temporal Contrastive Learning

Temporal contrastive methods like Contrastive Predictive Coding (CPC) (van den Oord
et al., 2018a) use autoregressive models to predict future latent states by distinguishing
between true and false future states, encouraging representations that capture essential
predictive features. Building on CPC, Contrastive Difference Predictive Coding (CDPC)
(Zheng et al., 2024a) introduces a temporal difference estimator for the InfoNCE loss used in
CPC, improving sample efficiency and performance in stochastic environments. Augmented
Temporal Contrast (ATC) (Stooke et al., 2020) aligns temporally close observations under
augmentation, learning representations independently of policy updates, which has proven
effective in complex RL settings.

Additional related approaches, such as ST-DIM (Anand et al., 2019) and DRIML (Mazoure
et al., 2020), formulate their objectives based on mutual information maximization between
global and local representations (Hjelm et al., 2018). Some methods combine contrastive
learning with auxiliary tasks, such as Allen et al. (2021) who combines contrastive learning
with an Inverse Dynamics Model (IDM) to learn Markov state abstractions. TACO (Zheng
et al., 2024b) takes a different approach and learns both state and action representations by
maximizing mutual information between: representations of current states combined with
action sequences, and representations of the corresponding future states.

c) Similarity to Metric-based Approaches

Both metric-based and contrastive methods define similarity between state embeddings dif-
ferently. Contrastive methods use a binary approach, treating pairs of observations as either
positive (similar) or negative (dissimilar), aiming to minimize representation distances for
positives and maximize them for negatives. Metric-based methods, however, quantify simi-
larity more precisely with continuous distances, reflecting task-relevant criteria like expected
rewards or transition dynamics. While contrastive methods often rely on image features or
temporal proximity, metric-based approaches incorporate task-specific information, which
can enable a richer representation space that captures varying degrees of task similarity.
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3.6 Non-Contrastive Learning Methods

Definition: Non-contrastive methods aim to learn effective representations for RL by min-
imizing the distance between representations of similar observations, which are again gener-
ated using temporal proximity or data transformations. Unlike the contrastive approaches
discussed in the previous section, these methods do not explicitly maximize the distance
between dissimilar observations, relying instead solely on positive pairs during training.

Details: Methods in this call rely heavily on techniques to prevent total dimensional col-
lapse—a failure mode where the representation space collapses to a single constant vector.
This collapse occurs when embeddings are only drawn together using positive pairs, leading
to a trivial solution where all embeddings converge to a constant vector, ϕ(ot) = c, which
minimizes error but retains no meaningful information. To mitigate this, non-contrastive
approaches mostly employ two type of strategies:

(i) Regularization techniques, which modify the loss function to maintain diversity in the
embedding space, for instance by encouraging the covariance matrix of a batch of embeddings
to approximate an identity matrix (Bardes et al., 2021); (ii) Architectural techniques that
introduce asymmetry—such as predictors, momentum encoders, and stop-gradients —which
help regulate update paths during training, thereby preventing collapse (Grill et al., 2020).

Fig. 13. Distinction between contrastive and non-contrastive approaches. Contrastive methods
rely on both positive and negative pairs to structure the representation space, maximizing similarity
within positive pairs and minimizing it for negatives. Non-contrastive methods, which avoid the
use of negative pairs, address the challenge of representation collapse through architectural designs
or loss regularization. In both approaches, positive samples are generated either through instance
discrimination using data augmentations of the same ot or via temporal proximity.
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Benefits: Avoiding the need for negative pairs greatly simplifies the learning process, making
these methods more computationally efficient and stable in high-dimensional spaces. Addi-
tionally, by focusing solely on positive pairs, non-contrastive methods are better suited for
scaling to complex observation spaces, avoiding the pitfalls of hard-to-balance negative sam-
pling that can limit contrastive approaches. These approaches are also intuitively aligned
with biological representation learning, where positive associations are reinforced without
explicitly contrasting them with negative examples.

Limitations: Non-contrastive methods are susceptible to informational collapse (also known
as dimensional collapse), where the embedding vectors fail to span the full representation
space, resulting in a lower-dimensional subspace that limits the information encoded. This
issue, affecting both contrastive and non-contrastive methods, leads to redundancy in the
representation, as embedding components can become highly correlated rather than decor-
related, reducing the diversity and effectiveness of the learned features. Additionally, these
methods often lack task-specific information, such as rewards, which could guide the forma-
tion of more meaningful state representations.

Categorization: Methods in this class can be classified based on whether they make use
of a latent predictive component in their architecture or not. In the self-supervised learning
terminology, we refer to the former as Joint Embedding Architectures (JEA) and the latter
as Joint Embedding Predictive Architectures (JEPA) (Assran et al., 2023). Non-predictive
methods aim to make representations invariant to transformations without using a predic-
tor between representation backbones. In contrast, predictive methods incorporate a non-
constant predictor, making the representations self-predictive by learning a latent dynamics
model during training, which is discarded afterward.

a) Non-Predictive Methods

BarlowRL (Cagatan & Akgun, 2023) can be seen as an example of a non-contrastive method
used for RL that does not use a predictive component. Based on the Barlow Twins framework
(Zbontar et al., 2021) and the Data-Efficient Rainbow algorithm (DER) (Hessel et al., 2018),
this regularization-based method trains an encoder to map closely together embeddings of
an observation ot and its data-augmented version o′

t. Tested on the Atari 100k benchmark, it
showed better results than CURL (Srinivas et al., 2020), a contrastive instance discrimination
method presented in the last section. However, it didn’t outperform SPR (Schwarzer et al.,
2020), a non-contrastive predictive method presented in the next section.

28



b) Self-Predictive Methods

Self-predictive methods can be further categorized by whether the predictor relies only on
the representation xt or is also conditioned on transformation parameters between observa-
tions, such as the action at (Garrido et al., 2024). Without conditioning, methods like BYOL
(Grill et al., 2020) and SimSiam (Chen & He, 2021) learn transformation-invariant represen-
tations. Conditioning on at, however, enables the predictor to encode the effect of actions
on representations, capturing dynamics in the environment. Among different approaches,
temporal self-predictive methods effectively leverage the temporal structure of reinforcement
learning environments. These methods focus on predicting future latent representations by
using temporally close observations as positive pairs, encouraging the encoder to capture
compressed and predictive information about future states. Specifically, the state encoder
ϕ(ot) is jointly learned with a latent transition model P (xt, at), which can be extended to
predict multiple steps into the future. Adding data augmentations on processed observations
can further enhance robustness and enable richer representations.

Methods: SPR (Schwarzer et al., 2020), inspired by BYOL (Grill et al., 2020), uses a transi-
tion model and data augmentations to predict an agent’s latent state representations several
steps into the future, achieving strong sample efficiency in pixel-based RL and outperforming
expert human scores on several Atari games. PBL (Guo et al., 2020), designed for multi-
task generalization, predicts future latent embeddings that recursively predict agent states,
creating a bootstrap effect to enhance environment dynamics learning. Both SPR and PBL
operate in the latent space, allowing for multimodal inputs and richer representations. Ni
et al. (2024) conducted a comprehensive analysis of self-predictive learning in MDPs and
POMDPs, introducing a minimalist self-predictive approach validated across various control
settings, including standard, distracting, and sparse-reward environments. Tang et al. (2022)
also explored self-predictive learning in RL, highlighting its ability to learn meaningful la-
tent representations by avoiding collapse through careful optimization dynamics. Building
on their insights, they introduced bidirectional self-predictive learning, using forward and
backward predictions to improve representation robustness. Some additional relevant works
in self-predictive RL include (Zhang et al., 2024b), (Fujimoto et al., 2024), (Khetarpal et al.,
2024), (Voelcker et al., 2024) and (Yu et al., 2022).
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3.7 Attention-based Methods

Definition: Attention-based methods in reinforcement learning involve mechanisms that
enable agents to focus on relevant parts and features of their complex observations while
ignoring less important information. This selective focus allows an agent to process inputs
more efficiently, leading to lower convergence time, better performance, and better inter-
pretability of an agent’s decision making.

Details: Attention mechanisms in visual RL agents are typically implemented using mask-
based or patch-based attention. Mask-based attention learns weights to highlight relevant
regions in observations, while patch-based attention divides inputs into patches and learns
relevance scores to focus on the most significant ones. Different types of attention—such
as regular or self-attention, soft or hard attention, temporal or spatial attention, single-
head or multi-head attention, and top-down or bottom-up attention—can be integrated
within an RL agent’s architecture. For CNN-based encoders, agents extract feature maps
h1, h2, . . . through convolutional layers c1, c2, . . ., starting from the observation ot, and map
these to the representation xt using fully connected layers. Self-attention modules can be
applied at different stages, targeting high-level or low-level features, or spanning across layers.
Alternatively, attention can act as a bottleneck mask directly on the input ot.

Fig. 14. Top: A self-attention module operates on high-level feature maps extracted from obser-
vations, creating attention masks that reweight these feature maps through element-wise multipli-
cation. Bottom: An attention bottleneck is applied directly to observations, where an attention
module selectively focuses on patches of the input image.
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The computational steps inside a self-attention module that operates on feature maps, sim-
ilarly to Figure 14 (top), can be understood as follows. Starting with a feature map H,
the module projects H into query, key, and value matrices: Q = WqH, K = WkH, and
V = WvH, where Wq, Wk, and Wv are learned transformations. Attention weights are
calculated as A = softmax(QK⊤/

√
d), capturing the relevance of regions within H. The re-

sulting attention-weighted representation Y = AV aggregates information from V according
to these relevance scores, focusing on parts of the input that enhance the relevance of xt.

Benefits/Limitations: These methods enhance efficiency by focusing on task-critical re-
gions both temporally and spatially, allowing agents to process relevant observations more
effectively and reduce the complexity of the state space. They also improve interpretability,
providing insights into the agent’s focus areas with the usage saliency maps, making the
decision-making process easier to understand. On the other hand, those mechanisms can in-
crease computational complexity due to the additional parameters required. They may also
exhibit poor generalization in new settings or with heavy distractions (Tang et al., 2020).

Methods: Tang et al. (2020) introduced a self-attention bottleneck that learns to select
the top K image patches for efficient processing of relevant visual information. Wu et al.
(2021) proposed an attention module that uses a self-supervised approach to generate at-
tention masks, enhancing CNN-based RL performance on Atari games. Chen et al. (2019)
integrated temporal and spatial attention into a hierarchical DRL framework for improved
lane changing in autonomous driving, achieving smoother and safer behaviors. Chen et al.
(2024a) propose Focus-Then-Decide (FTD), a method that combines two auxiliary tasks with
the RL loss to train an attention mechanism. This mechanism identifies task-relevant objects
from those returned by a foundational segmentation model, leveraging prior computations to
achieve strong performance in complex, visually noisy scenarios. Bertoin et al. (2022) pro-
pose Saliency-Guided Q-networks (SGQN) for improved generalization, a framework that
generate saliency maps highlighting the most relevant parts of an image for decision-making.
The training procedure is supported by two additional objectives: a self-supervised feedback
loop where the agent learns to predict its own saliency maps and a regularization term that
ensures the value function depends more on the identified important regions. Sodhani et al.
(2021b) introduced an attention-based multi-task learning method that uses a mixture of k
encoders, with task context from a pre-trained language model determining soft-attention
weights for combining encoder outputs, improving task performance. Mott et al. (2019) pro-
posed a soft, top-down attention mechanism that enhances interpretability and performance
by generating task-focused attention maps, enabling better generalization and adaptability
to unseen game configurations, surpassing bottom-up approaches.
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3.8 Alternative Approaches

In this section, we provide a brief overview of some additional classes of methods for state
representation learning in DRL. While their principles may be less widely used than other
presented classes, they still offer unique approaches and insights on learning representations.

a) Spectral-based Methods

Definition: Spectral-based methods in state representation learning employ the eigenvalues
and eigenvectors of matrices derived from transition dynamics to capture structural and geo-
metric information about the environment. These methods create embeddings that preserve
the connectivity and global topology of the state space, enhancing the representation xt of
the observation ot.

Details: In spectral-based methods, observations ot can be represented as nodes in a graph
G = (O,W ), where W is a matrix that reflects transition probabilities between observations.
The Laplacian matrix L = D − W , where D is a matrix capturing how connected each ob-
servation is, provides spectral properties used to create embeddings. By using the smallest
eigenvectors of L, each observation ot is mapped to a vector xt = [e1(ot), e2(ot), . . . , ed(ot)]
that captures both local and global relationships in the environment. Laplacian represen-
tations were initially formulated as a pretraining objective, learned for a uniformly random
policy and fixed throughout training to avoid complexity. This static approach however fails
to adapt to policies during RL, as policy updates during training can necessitate recompu-
tation of representations. Recent methods (Anonymous, 2025) address this limitation by
enabling online Laplacian representation learning.

Methods: Gomez et al. (2024) introduced a framework to approximate accurately Laplacian
eigenvectors and eigenvalues effectively, while addressing challenges such as hyperparameter
sensitivity and scalability, ensuring accurate and robust representations for RL. Wang et al.
(2023) improves traditional Laplacian representations by making sure the Euclidean repre-
sentation distance between two observations also reflects a measure of reachability between
them in the environment, allowing better reward shaping and bottleneck state discovery
in goal-reaching tasks. Finally, Wu et al. (2019) propose a scalable, sample-efficient ap-
proach to compute Laplacian eigenvectors in model-free RL, enabling practical applications
in high-dimensional or continuous environments.
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b) Information Bottleneck Approaches

Definition: The Information-Bottleneck (IB) principle (Tishby et al., 2000) provides a
framework for learning compact and task-relevant representations by optimizing the trade-
off between compression and relevance. When used for SRL, IB aims to learn a state encoder
that minimizes the mutual information I(O;X) between observations O and representations
X to compress irrelevant information while maximizing I(X;Y ), where Y corresponds to
task-relevant targets such as rewards or actions.

Details: The IB objective balances compression and relevance of state representations by
minimizing I(O;X) − βI(X;Y ), where ot and xt denote observations and representations,
respectively. Regular IB requires estimating mutual information terms, which is computa-
tionally intractable for high-dimensional inputs. Variational Information Bottleneck (VIB)
(Alemi et al., 2017) addresses this by introducing parametric approximations with an en-
coder qϕ(X|O) and decoder pψ(Y |X). The VIB objective therefore combines task relevance
and compactness, making it scalable for deep RL.

Methods: REPDIB (Islam et al., 2023b) leverages the IB principle by incorporating discrete
latent representations to enforce a structured and compact representation space. It maxi-
mizes the relevance of task-specific information while filtering out exogenous noise, leading
to improved exploration and performances in continuous control tasks. DRIBO (Fan & Li,
2022) employs a multi-view framework to filter out irrelevant information via a contrastive
Multi-View IB (MIB) objective, enhancing robustness to visual distractions. IBAC (Igl
et al., 2019) integrates IB into an actor-critic framework, promoting compressed representa-
tions and better feature extraction in low-data regimes. Additional methods include IBORM
(Jin et al., 2021), which leverage IB in a multi-agent setting, and MIB (You & Liu, 2024),
which introduced a multimodal information bottleneck approach for learning task-relevant
joint representations from egocentric images and proprioception.
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4. Benchmarking & Evaluation

Evaluating correctly state representation learning methods requires appropriate benchmarks
and tools to assess the quality of the learned representations. The choice of a benchmark
depends on the specific nature of the task to solve, such as whether the environment in-
volves continuous or discrete observation/action spaces. Key properties like reward density,
task horizon, and the presence of distractions also play a crucial role in selecting the right
environment. In fact, comparisons between SRL methods should primarily focus on these
environment-specific properties, as suggested by Tomar et al. (2021). Rather than claiming
that approach A is universally better than approach B on a given benchmark, it is better to
state that approach A is better suited for distraction-based learning than approach B, based
on the experiments conducted.

In the following sections, common evaluation aspects of SRL methods are reviewed, followed
by methods for assessing the quality of the learned state representations.

4.1 Common Evaluation Aspects

Accurately evaluating state representation learning methods requires assessing their effec-
tiveness in supporting key objectives both during and after reinforcement learning training.
These methods are typically compared based on the following aspects:

Performance: In deep reinforcement learning, better performance is defined by achieving
a higher expected cumulative reward. An improved representation ϕ should enable a policy
πϕ that maximizes reward, such that J(πϕ) ≥ J(πbaseline). This criterion applies whether the
representations are pre-trained via SRL and then kept fixed during RL, or when performance
is evaluated concurrently as the representations are refined.

Sample Efficiency: Better sample efficiency can be quantified by the number of samples
N required to achieve a specific performance level. Let N(ϵ) be the number of samples
needed to achieve a performance within ϵ of the optimal performance J∗. An improved
representation ϕ enhances sample efficiency if Nϕ(ϵ) < Nbaseline(ϵ), meaning fewer samples
are needed with the improved representation to achieve the same performance.



Generalization: The generalization ability of a representation ϕ quantifies its capacity to
support policy performance in previously unseen environments. A representation generalizes
well if the policy πϕ achieves a consistent expected return across different environments, mea-
sured by the condition |J(πϕ; train)−J(πϕ; test)| ≤ δ, where δ is a small tolerance threshold.
Additionally, fine-tuning with minimal environment interactions to achieve prior high perfor-
mance further indicates the effectiveness of a representation in this context. Generalization
may also be assessed by metrics such as transfer success rate or zero-shot adaptation score.

Robustness: The robustness of a state representation ϕ can be assessed by its stability
across variations in underlying RL algorithms, hyperparameters, and training conditions
within the SRL method. Formally, given a set of configurations C (e.g., different RL al-
gorithms, hyperparameter settings, or noise levels) and a tolerance δ, the representation is
considered robust if maxc∈C |J(πϕ; c) −J(πϕ; c∗)| ≤ δ, where c∗ represents an optimal config-
uration. A robust representation exhibits minimal performance variance across C, indicating
reduced dependency on specific settings and greater applicability across various RL scenarios.

4.2 Assessing the Quality of Representations

Evaluating the quality of learned state representations in reinforcement learning (RL) is es-
sential for understanding how well representations capture task-relevant information. There-
fore, having good metrics for quantifying the quality of those learned state representations
is crucial. Various methods can be utilized for this purpose, and we categorized those based
on whether they require access to ground truth states st or not. However, assuming access
to true underlying states isn’t always realistic and may limit practical applicability.

a) Evaluation Without True States

Total Return: The most common approach for evaluating the quality of learned state
representations is simply to let an RL agent use the learned states to perform the desired task
and assess the final return obtained with specific representations methods. This verifies that
the necessary information to solve the task is embedded in the representation xt. However,
this process is often time-intensive and computationally demanding, necessitating substantial
data and multiple random seeds to account for the high variance in performance (Agarwal
et al., 2021b). The performance can also vary depending on the base agent, adding further
complexity to this evaluation approach.
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Visual Inspection: Another technique that does not require access to ground truth states
involves extracting the observations of the nearest neighbors in the learned state space and
visually examining if those observations match approximately to the close neighbors in the
ground truth state space (Sermanet et al., 2018). In other words, close points in the latent
state space should correspond to observations with similar task-relevant information.

Latent Information: More general metrics for assessing the quality of representations can
be based on measuring properties of good SSL representations, such as the variance of in-
dividual dimensions across a batch, the covariance between representation dimensions, the
average entropy of representation vectors, or spectral properties of a representation matrix,
such as its effective rank or condition number (Garrido et al., 2023). Disentanglement could
be measured by perturbing randomly small parts of an input observation and measuring
the impact on the dimensions of representation xt, as disentangled representations are ex-
pected to limit the effect of random small perturbations to only a few dimensions, reflecting
independent and meaningful feature encoding.

Latent Continuity: Metrics can also be designed to evaluate the continuity and smooth-
ness of Q-functions, action predictions, or simply temporal coherence in the representation
space (Le Lan et al., 2021). By examining multiple local areas in the representation space,
along with the nearest neighbors and their corresponding Q-values, action distributions, or
time-steps, such metrics can assess whether nearby points yield similar values or actions.
Ensuring this continuity helps maintain stable decision-making and simplifies the function
approximation of the policy ψπ(xt) and/or value network ψv(xt), enhancing efficiency.

Linear Probing: Zhang et al. (2024a) proposed to use 2 probing tasks for assessing the
quality of learned representations: (i) reward prediction in a given state, and (ii) action
prediction taken by an expert in a given state. The authors used linear probing specifically,
where a linear layer is trained on top of frozen representations for each prediction task, con-
straining the probe’s performance to rely heavily on the quality of xt. Overall, their probing
tasks were shown to strongly correlate with downstream control performance, offering an
efficient method for assessing the quality of state representations. Probing on frozen rep-
resentations xt can also be used to reconstruct observations, which evaluates how well the
representations retain information about the original observations. However, this may be
less effective when observations contain significant noise or distractions.
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Interpretability: Understanding the key information that RL agents focus on within obser-
vations and encoded representations can provide better insights into their decision-making.
A general scheme for determining the attention levels at different parts of an observation
consist of perturbing random areas of the input, then measuring the resulting policy or value
changes (Greydanus et al., 2018) (Yuan et al., 2022a). Regions causing higher variance un-
der similar perturbations are likely more relevant for the agent. This perturbation-based
approach can also be extended to individual representation dimensions to evaluate their im-
portance by analyzing the induced changes in policy or value outputs. When dealing with
stacked observations, gradient-based techniques such as (Weitkamp et al., 2019) provide a
practical alternative through action-specific activation maps.

b) Evaluation with True States

Probing: Evaluating the quality of learned state representations can be done by training
a linear classifier on top of frozen representations to predict ground-truth state variables
(Jonschkowski et al., 2017), and reporting metrics such as the mean F1 score. This linear
probing approach was applied by Anand et al. (2019) to evaluate the performance of a
representation learning technique in Atari. The underlying assumption is that successful
regression indicates that meaningful features are well-encoded in the learned state, and good
generalization performance on the test set suggests a robust encoding of these features. This
concept can also be extended to non-linear probes (Tupper & Neshatian, 2020).

Geometry: The KNN-MSE (K-Nearest Neighbors Mean Squared Error) metric from Lesort
et al. (2017b) can evaluate learned state representations by first identifying the k-nearest
neighbors of each image I in the learned state space. It then calculates the mean squared
error between the ground truth states of the original image I and its nearest neighbors
I ′ to assess the preservation of local structure in the learned representations. Manifold
learning metrics such as NIEQA (Zhang et al., 2012) can also evaluate how well the learned
representations preserve the original state’s local and global geometry (Lesort et al., 2017a).

Disentanglement: The disentanglement metric proposed in Higgins et al. (2016) can assess
how well a learned representation separates factors of variation by fixing one factor in pairs
of data samples, calculating the average differences in their latent representations, and using
a linear classifier to predict the fixed factor. The classifier’s accuracy indicates the quality of
disentanglement, with higher accuracy reflecting better separation of independent factors.
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5. Looking Beyond

While current state representation learning (SRL) methods for deep reinforcement learning
(DRL) have made good progress in improving sample efficiency, generalization, and perfor-
mance, there is still room for improvement. As environments become more complex and
varied, it’s important to explore more ways of enhancing those techniques for more challeng-
ing settings. This section looks at several directions, each extending the learning of state
representations to broader domains.

Direction Description

Multi-Task Explore the sharing of representations across multiple tasks
to capture common structures.

Offline Pre-Training Leverage datasets of past interactions for pre-training state
representations, boosting efficiency and transfer.

Pre-trained Vision Integrate representations from pre-trained visual models
into agents for efficiency and generalization gains.

Zero-Shot RL Produce representations that enable agents to perform new
tasks without additional training.

Leveraging Priors Utilize large language models (LLMs/VLMs) to incorporate
prior knowledge into representations.

Multi-Modal Methods that integrate information from multiple sensory
modalities for getting richer representations.

Table 3. Promising directions for enhancing state representation learning in DRL.



5.1 Multi-Task Representation Learning

Definition: Multi-task representation learning (MTRL) involves training an RL agent to
extract a shared low-dimensional representation among a set of related tasks and use either
one or separate heads attached to this common representation to solve each task. This ap-
proach leverages the similarities and shared features among tasks to improve overall learning
efficiency and performance. Although various settings of MTRL exist, they often share the
common points presented here.

Benefits: MTRL reduces sample complexity by leveraging shared structures between tasks,
which facilitates faster convergence, enhances generalization and robustness on new tasks,
and enables effective knowledge transfer, where learning one task boosts performance on
related ones (Cheng et al., 2022) (Efroni et al., 2022).

Challenges: Negative transfer when shared representations are suboptimal for certain tasks
represents an important issue, which can lead to interference and degraded performance
(Sodhani et al., 2021a). Balancing task contributions to the shared encoder is also challeng-
ing when tasks vary in difficulty or nature. Additionally, differences in data distributions
among tasks can limit the effectiveness of representations, with benefits often relying on
some assumptions (Lu et al., 2022).

Methods: To mitigate negative interference, CARE (Sodhani et al., 2021a) proposes to
encode observations into multiple representations using a mixture of encoders, allowing the
agent to dynamically attend to relevant representations based on context. Efroni et al.
(2022) introduced a framework for efficient representational transfer in reinforcement learn-
ing, showcasing sample complexity gains. Kalashnikov et al. (2022) presented MT-Opt, a
scalable multi-task robotic learning system leveraging shared experiences and representa-
tions. PBL (Guo et al., 2020) trains representations by predicting latent embeddings of
future observations, which are simultaneously trained to predict the original representations,
enabling strong performances in multitask and partially observable RL settings. Hessel et al.
(2019) introduced PopArt, a framework that automatically adjusts the contribution of each
task to the learning dynamics of multi-task RL agents, hence becoming invariant to different
reward densities and magnitude across tasks. Ishfaq et al. (2024) proposed MORL, an offline
multitask representation learning algorithm that enhances sample efficiency in downstream
tasks. Cheng et al. (2022) introduced REFUEL, a representation learning algorithm for
multitask RL under low-rank MDPs, with proven sample complexity benefits.
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5.2 Offline Pre-Training of Representations

Definition: The offline pre-training of state representations refers to the learning of state
representations from static datasets of trajectories {(oi,t, ai,t, ri,t) | i = 1, . . . , N ; t = 1, . . . , T}
or demonstrations {(oi,t, ai,t) | i = 1, . . . , N ; t = 1, . . . , T} in order to accelerate learning on
downstream RL tasks. This strategy is motivated by the necessity to enhance data efficiency
on downstream tasks and overcome the limitations of learning tabula rasa, which often leads
to some degree of overfitting. Akin to human decision-making, this aims to leverage prior
knowledge contained in some already collected interactions.

Benefits: By leveraging large amounts of pre-collected data, offline pre-training of represen-
tations can enhance data efficiency by reducing the need for extensive online interactions to
achieve high performance. This pretraining process can lead to better initializations for RL
algorithms, resulting in faster convergence and superior final performance on downstream
tasks. Moreover, representations learned from diverse offline datasets can enhance the ro-
bustness of RL agents, allowing them to generalize better across environments and tasks.

Challenges: The quality and diversity of the offline dataset are crucial, as poorly curated
or biased datasets can result in suboptimal representations. Ensuring that the learned repre-
sentations are transferable and useful for a wide range of downstream tasks is also complex,
as certain features may not generalize well beyond the pretraining context. Additionally,
the pretraining of large models on extensive datasets demands substantial computational
resources, making the process both time-consuming and expensive.

Methods: The study performed by Yang & Nachum (2021) demonstrate that offline ex-
perience datasets can successfully be used to learn state representations of observations
such that learning policies from these pre-trained representations improves performance on
a downstream task. Through their investigation, they demonstrate performance gains across
3 downstream applications: online RL, imitation learning, and offline RL. Their results pro-
vide good insights on different representation learning objectives, and also suggests that the
optimal objective depends on the downstream task’s nature and is not absolute. Kim et al.
(2024) also investigated the efficacy of various pre-training objectives on trajectory and ob-
servation datasets, but focused specifically on evaluating the generalization capabilities of
visual RL agents compared to a broader range of pre-training approaches. Farebrother et al.
(2023) introduced Proto-Value Networks (PVNs), a method that scales representation learn-
ing by using auxiliary predictions based on the successor measure to capture the structure
of the environment, producing rich state features that enable competitive performance with
fewer interactions. Schwarzer et al. (2021) introduced SGI, a self-supervised method for
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representation learning that combines the latent dynamics modeling from SPR Schwarzer
et al. (2020), the unsupervised goal-conditioned RL from HER (Andrychowicz et al., 2017),
and inverse dynamics modeling for capturing environment dynamics. It achieves strong
performance on the Atari 100k benchmark with reduced data, and good scaling properties.

5.3 Pre-trained Visual Representations

Definition: Pre-trained visual representations (PVRs), also called visual foundation models
for control, involve utilizing unlabeled pre-training data from images and/or videos to learn
representations that can be used for downstream reinforcement learning tasks. These repre-
sentations are trained to learn the spatial characteristics of observations {oi | i = 1, . . . , N}
and the temporal dynamics from videos {oi,t | i = 1, . . . , N ; t = 1, . . . , T}, and can be seen as
initializing an RL agent with some initial vision capabilities before learning a task. PVRs can
be pre-trained either on domain-similar data or on general data with transferable features.

Benefits: PVRs benefit from abundant and inexpensive image and video data compared
to action-reward-labeled trajectory data, enabling scalable learning across domains. They
improve sample efficiency by providing pre-learned visual features, reducing the need for task-
specific relearning. PVRs also enhance generalization by transferring robust visual features
across diverse tasks and environments, even under variations or unseen conditions.

Challenges: However, challenges include the lack of temporal data leverage for Image-
based PVRs, while video-based PVRs face challenges like exogenous noise (e.g., background
movements) that degrade performance. Without action labels, distinguishing relevant states
from noise becomes significantly harder, and sample complexity for video data can grow
exponentially Misra et al. (2024). Additionally, distribution shifts between pre-training and
target tasks further complicate video representation learning Zhao et al. (2022). Finally,
while PVRs benefit model-free RL, Schneider et al. (2024) found they fail to enhance sample
efficiency or generalization in model-based RL, especially for out-of-distribution cases.

Methods: Yuan et al. (2022b) demonstrated that frozen ImageNet ResNet representations
combined with DrQ-v2 (Yarats et al., 2021) as a base algorithm can significantly improve
generalization in challenging settings, though fine-tuning degraded performance. MVP (Xiao
et al., 2022) showed that pre-training on diverse image and video data using masked image
modeling (He et al., 2022) while keeping the weights of the visual encoder frozen preserves
the quality of representations and accelerates RL training on downstream motor tasks. Ma-
jumdar et al. (2023) studied PVRs across tasks, finding: (1) no universal PVR method
dominate despite overall better performance than learning from scratch; (2) scaling model
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size and data diversity improves average performance but not consistently across tasks; (3)
adapting PVRs to downstream tasks provides the best results and is more effective than
training representations from scratch. The study made by Kim et al. (2024) of different
pre-training objectives suggest that image and video-based PVRs improve generalization
across different target tasks, while reward-specific pre-training benefits similar domains but
performs poorly in different target environments.

Misra et al. (2024) analyzed different approaches for video-based representation learning
and found that forward modeling and temporal contrastive learning objectives can efficiently
capture latent states under independent and identically distributed (iid) noise, but struggle
with exogenous noise, which increases sample complexity. Their empirical results confirm
strong performance in noise-free settings but a degradation under noise. Other relevant work
includes VIP (Ma et al., 2023) and R3M (Nair et al., 2022), though the latter was initially
limited to behavior cloning. Finally, approaches that learn latent representations while
recovering latent-action information solely from video dynamics (Schmidt & Jiang, 2024)
represent an interesting avenue for video-based PVRs trained on large action-free dataset.

5.4 Representations for Zero-Shot RL

Definition: Zero-shot RL aims to enable agents to perform optimally on any reward function
provided at test time without additional training, planning, or fine-tuning. The objective is to
train agents that can understand and execute any task description immediately by utilizing a
compact environment representation derived from reward-free transitions (st, at, st+1). When
a reward function is specified, the agent should use the learned representations to generate
an effective policy with minimal computation. More precisely, given a reward-free MDP
(S,A, P, γ), the goal is to obtain a learnable representation E such that, once a reward
function r : S × A → R is provided, we can compute without planning, from E and r, a
policy π whose performance is close to optimal.

Benefits/Challenges: Zero-shot RL offers flexibility by enabling agents to adapt to various
tasks without retraining, enhancing efficiency and scalability across numerous tasks with-
out additional training or planning. However, challenges include developing comprehensive
representations without reward information, ensuring transferability across complex tasks,
consistently achieving near-optimal performances, assuming access to good exploration poli-
cies during pre-training, and the complexity of the algorithms.
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Methods: Forward-Backward (FB) representations, introduced by Touati & Ollivier (2021),
enable zero-shot RL by learning two functions: a forward function to capture future transi-
tions and a backward function to encode paths to states, trained in an unsupervised manner
on state transitions without rewards. The intuition for these representations can be seen as
aligning the future of a state with the past of another by maximizing F (s)⊤B(s′) for states
s and s′ that are closely connected through the environment’s dynamics. This approach
offers a simpler alternative to world models, enabling efficient computation of near-optimal
policies for any reward function without additional training or planning, though it relies on
an effective exploration strategy. In a related study by Touati et al. (2023), FB representa-
tions have shown to deliver superior performances across a wider range of settings compared
to methods based on successor features (SFs), which also aim to do zero-shot RL based
on successor representations (SRs) (Dayan, 1993). Recently, Jeen et al. (2024) proposed a
Value-Conservative version of FB representations, addressing the performance degradation
issue of previous methods when trained on small, low-diversity datasets. Other recent works
in that direction include Proto Successor Measure Agarwal et al. (2024), Hilbert Foundation
Policies (Park et al., 2024a), and Function Encoder (Ingebrand et al., 2024).

5.5 Leveraging VLMs/LLMs Prior Knowledge

Definition: Leveraging Vision-Language Models (VLMs) and Large Language Models
(LLMs) for state representation learning involves using large pre-trained models to trans-
form visual observations into natural language descriptions. These descriptions serve as
interpretable and semantically rich state representations, which can then be used to produce
task-relevant text embeddings, allowing reinforcement learning (RL) agents to learn policies
from embeddings rather than pixels.

Benefits/Challenges: Leveraging VLMs/LLMs for this purpose can improve generaliza-
tion by creating invariant representations that are less affected by disturbances in observa-
tions. Indeed, these models can successfully extract the presence of objects and filter out
irrelevant details based on task-specific knowledge, focusing only on what is relevant. This
has the advantage of leveraging the vast prior knowledge embedded in those large models,
and can also enhance interpretability by allowing for a more transparent understanding of
the agent’s decision-making. However, many challenges still exist for a successful integration
of VLMs/LLMs within an RL framework, starting by the higher computational resources
necessary to leverage the capabilities of those models.
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Methods: An interesting work in this direction was done by Rahman & Xue (2024) where
they proposed to use a VLM to generate an image description, refined by a LLM to remove
irrelevant information, and used for producing a state embedding given to the reinforcement
learning agent. Their method showed generalization improvements compared to an end-to-
end RL baseline. Other related works include (Chen et al., 2024c) (Wang et al., 2024a).

5.6 Multi-Modal Representation Learning

Definition: Multi-Modal State Representation Learning (MMSRL) integrates multiple data
types to create richer and more comprehensive state representations for RL agents. By
combining diverse information sources with different properties, MMSRL can enhance an
agent’s understanding of the environment, improving decision-making and generalization.
For example, a robot navigating a room with a camera and a microphone will be able to
learn unified representations combining sight and sound with MMSRL. Hence if it hears glass
shatter but doesn’t see it, the robot will be able to infer danger in another room.

Benefits/Challenges: MMSRL creates richer representations by capturing more compre-
hensive environmental features, making it resilient to noise or occlusion in individual modal-
ities. This robustness improves the agent’s ability to generalize and adapt across different
tasks, resulting in better performance in varied and complex environments.

Methods: The work done by Becker et al. (2024) introduces a framework that enables the
selection of the most suitable loss for each modality, such as using a reconstruction losses for
low-dimensional proprioception data and a contrastive one for images with distractions.

5.7 Other Directions

Several directions fall outside the scope of this work but still deserve consideration: (i)
Exploration strategies for enhanced state representation learning, rather than for rewards
directly, will be essential for future open-ended applications, as they can ensure a relevant
state space coverage and mitigate the risk of learning good representations for only a small
part of the state space. In fact, the interplay between effective exploration and high-quality
state representations is particularly important since effective exploration relies on a solid un-
derstanding of previously encountered states. (ii) State representation learning in continual
learning settings, where representations are learned from continually evolving environments,
aligns more closely with the dynamic nature of real-world problems and should be investi-
gated further. (iii) Evaluating the scalability of SRL approaches remains an open challenge,
with future methods needing to scale with increasing environment complexity, number of
tasks, and aspects such as computational resources, data availability, and model parameters.
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6. Conclusion

To summarize, this survey provides a comprehensive overview of techniques used for repre-
sentation learning in deep reinforcement learning, focusing on strategies to enhance learning
efficiency, performance, and generalization across high-dimensional observation spaces. By
categorizing methods into distinct classes, we have highlighted each approach’s mechanisms,
strengths, and limitations, clarifying the landscape of SRL methods and serving as a practical
guide for selecting suitable techniques. We also explored evaluation strategies for assessing
the quality of learned representations, especially as techniques are applied to increasingly
challenging settings. Robust evaluation remains essential for real-world applications, sup-
porting reliable decision-making and generalization.

Looking forward, SRL methods must adapt to a broader set of settings, such as those outlined
in Section 5. For each direction in that section, we reviewed related work that could serve
as a foundation for further exploration, emphasizing the importance of continued research
in these areas. Ultimately, advancing SRL will be crucial for developing robust, generaliz-
able, and efficient DRL systems capable of tackling complex real-world tasks. We hope this
survey serves as a resource for researchers and practitioners aiming to deepen their under-
standing of SRL techniques and offers a strong foundation for learning state representations
in reinforcement learning.

Limitations: This survey primarily examines state representation learning methods within
the model-free online RL setting, without addressing model-based approaches and offline
RL evaluation. The comparisons between classes are largely theoretical or rely on previous
studies. Future work could include experimental evaluations to compare approaches on
multiple aspects. Lastly, while the taxonomy provides an overview of the main classes for
learning state representations in RL, it does not explore each class in detail, as each could
be the focus of its own survey. Some isolated approaches may also be missing due to our
focus on categorizing mostly the recent developments.
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A. Supplementary Content
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