UNIVERSITE Inductor Magnetic Energy Estimation Based on o5

y \
Multilayer Perceptron Regression Model e P\
Group 23: David Cajander, Ayoub Echchahed, Majid Heidary, Nassim El l
Massaudi, Tak Wa Ng | s
Faculte des sciences et de genie 1y 7005 / GIF 7015 Introduction to Machine Learning Iduciggiype o,

Introduction : Context and Objective

Context : This project aims to contribute to the field of the
dimensioning and modeling of electromagnetic devices (the type of o e g
DC power supply filter inductors 0-13000A of 2.47MW) by replacing mainpy | - Stores all the process parameters into variable Q
an electromagnetic model based on finite element analysis (FEA, S AL ;i?é“[,‘;‘:ﬂi”ﬁ,ﬁ:;?;ﬁ:ﬁ‘:tg‘;”""“5
a highly time-consuming numerical partial differential equation

(PDE) method) with a data-driven supervised model to forecast
the inductor magnetic energy based on the inductor’s physical
dimensions and the magnetic core’s induction to reduce the com-
putational cost significantly with acceptable precision of inductor

Run main.py config.py
- This file is used several time during main

Creates folder «TrainedModel1»
At the end of the process contains the following
files:

- coqﬁg.yaml config.yaml
- TrainedModel1_model.ckpt - File created for long term backup

- Performance scatter graphs - contains variance, mean from dataHelper.py
- Contains Hyperpara from modelOptimizer.py

magnetic energy estimation. - dataHelper.py
& &Y Data'lr':'lai::fbprr!r'\atim - Loads the data, transform the data (z-scaling &
(94) Iog),_creates the datasets that will be used for
Objective : To explore and com different ised i hei
J . p pare dillferent supervised regression - stores the input (features) number, and the
models : multilayer perceptron (MLP) regression, linear/polynomial dataset in config.py
regression, and decision tree regression, as the replacement for the —
modelOptimizer.py
PDE model based on the FEA. main.py - launch_opti (fct. Calling optuna) neuralModelOpti.py
ModelOptimizer - Accesses the best performance of the optuna - File that contains the logic of the neuronal model
(100) trials —— } used in the optimization phase.
- stores the best hyperpara from the trial loop in - Builds the ANN in lightnening (with

config.py and in config.yaml hyperparameters proposed by optuna)

/\ - Contains all 3 steps : training, validation and test
‘J L | | - Training (50%): leamning process (retropagation
vV

Dataset : 10° samples, 7 features and 1

after each batch (=32samples) until the whole
Optuna: training dataset is through (i.e. 1 epoch)
- creates the study (object containing all the trials) - Validation(20%): calculates loss (MSE)

- call function objective - Then does this for 20 epochs or early stop if no
improvement after 5 epochs.
function objective: \ > - Then the perfromance and the hyperparameters

target

-split dataset are returned and saved in the study of Optuna.

» 5 physical dimensions features : the topology of the inductor

-suggest leaming rate and optimizer - The cycle reapeats for the next trial with other
(e, c, d_, epm_, bdembob_, unit : m) -create the model neuralmodelopti hyperparameters.
-does the fit and calls neuralmodelopti.py - We have defined 20 trials. le 20 cycles.
» 1 feature : the volume of the inductor (unit : m?)
. config.yaml
» 1 feature : the maximum induction in the magnetic core (Unit : main.py) Egﬁt‘;ﬁgt\fﬁf:;é‘;"ﬂ:;:f'fg;"é‘gtal_'elper oy <:
Write_hyperparame : ’ L
T 1 — - Contains Hyperpara from modelOptimizer.py
€S a) ters (102) - Main writes nbr. Inputs and outputs
» 1 target : the magnetic energy contained in the inductor (unit :
modelTrainer.py
] OUIe) - LaunchTrain: defines the seed (-1 = random, >0
frozen), creates neuronalModell.py with
[p— — hyperpara in config.py, then calls trainModel
' =3~ main.py - trainModell: data split (train50%, valid20%, /
al _ Ll ! modelTrainer.py Test30%), creates dataloaders, creates callback /
S| —= eisobob_ (=] (103) to save best model (checkpoints), creates object neuronalModel py ,
o R trainer (epoch, gpu, callback ckpt), saves path to - Egg;?ﬁiﬁ:’:::i':;;hsggg:Ofthe neuronal model
@ 1 heckpoint in config.yaml, then the trainer :
! \ — — checkp g.yami, . . o . . .
Pt i LSSy)—-—ub b- | (object from lightenings) calls neuronalModel to - Builds the ANN in lightnening (withoptimized
munnivaa nnEEEE 1T do the fit of the ANN. HYPEADEIERTI GG T G ONMG-PY) S
g' | =4 - Aftertraining, calls modelEvaluator.py - _?:;T:l?r:gs (glc:; ?tzgsn;i:\rg'gggg'g:tzg:ggﬁfst
=1L H=~ . _ b):
& 2 ,' ' M | Inductor view from above ‘J L’ after each batch (=32samples) until the whole
E1 ¥ ay | § training dataset is through (i.e. 1 epoch)
Ne_7’ \|==ea = modelEvaluator.py N - Validation(20%): calculates loss (MSE)

Np-u - evaluateModels(fct): creates an array with the - With checkpoint callback we store the model and
test dataset and an array to remove non its performance ifit is better than the previous
significant values (magnEnergy<1joule) oe.

LA~ 1 - Printscatter(fct) and printErrorScatter (fct): - Does this for 100 epochs.
T o 7 [— - creates the scatter images stored in the folder
= Lo «TrainedModel 1 J L
P - printScore(fct): displays in console all the metrics \/

“-ﬁ* Checkpoint.ckpt

- = - - Contains all the meta data to reload the model

Induct ide Vi (e.g. wheigts, structure etc...)
nductorside view - This file is stored in the folder «TrainedModel1»
Output

printScore(fct): displays in console all the metrics

Discussion and Conclusion : Results : Model Comparison and MLP Prediction with Score 1.956%

MLP as the Best Candidate

in_inputs: T : Best hyperparameter configuration from Optuna after 100 trials (best hyperparam.) :
We obtain fast convergence for all model with high accuracies | nrayors. | 1r=0.0007949
: . : : | = 2Yors: i =0(
(only if the data preprocessing is applied). After comparing and :1e§{=::ng_=?:§i] ! E:Sf:niy;;: la)(z)e(rli Ll;lg)
n ni en: ©
analyzing the results like testing with different dataset sizes for | optimizer: Optimizer.Adam | Training epochs: 100
. . . heckpoint th: TrainedModel del. i
understanding which models perform better in a sparse context ootimtsation Epocha: 20 = Ckpt: S
and testing the extrapolation regime error for each model, our | optimization Trials: I Minimum relative error :
L | Training Epochs: ' I T e e SO
model of choice is the MLP. | Training dataset split: : laximum relative errol
!validation dataset split: 1 Mean relative error
. : - : ot Omtamet et s e T L T p s
Decision Tree vs MLP : Even if the decision tree looks like Pearsons coefs r2: ledian relative error
oLs t lati : 1.956%
a competitive candidate, its result is obtained in a simplified roxecast melative exox ’
problem with only 7 features and 1 target. With more features L4000 - TiainedModel - Overall View of predictions . TrainedMode - scatter of absolute errors 000
as the input, we believe that the MLP can perform better than 2° !
the decision tree, as the MLP should be more suitable for larger 12000 1 /’ 5000 - [12000
dataset with complex non-linear mapping in high dimensions. 10000 4 / 10000 ¢
4000 - ©
Important and interesting observations : & B0007 2 8000 &
'S % 3000 - 2
1. Data preprocessing : Without the z-scaling on features (re- 2 6000+ 2 6000 5
moving unit and standardizing the features) and the log : 1000 2000 - P
transformation on the target (minimizing the skewness), the :
training showed poor performance, especially for MLP. 2000 - . - 2000
o]
2. Hyperparameters trials of MLP : The processing time is 0- ° 04 o
long but that is the key to obtaining a good-performing 0 2000 4000 6000 8000 10000 12000 14000 0 5000 10000 15000 20000 25000 30000
. Predicti test numb
ANN model. The best hyperparameter set has been provided B— ; il ;
after 100 trials using Optuna. Without proper range setting Models / Metrics Accuracy (R*) | Accuracy without Data Preprocessing (R~)
and/or enough trial, Optuna might not be able to provide Multilayer Perceptron 0.9986 0
ood hyperparameters.))
5 YPEIP Linear Regression 0.7918 0.5974
3. The number of training epochs in MLP : It has been set
Polynomial Regression 0.9567 0.9213
to 100 to reach a score below 2% (10 epochs for 20% and 20 y &
epochs for 5%). Decision Tree Regression 0.9873 0.9723

