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Abstract — This project article presents a data-driven approach to the task of critical temperature (Tc) prediction for 

superconducting materials. Deep neural network models were used as surrogate models to learn the mapping between the 

features of known superconducting materials and their respective critical temperature (Tc) observed in laboratory. A dataset 

of 21 263 superconductors was used with 82 attributes per superconductors, including characteristics of the materials such as 

the number of elements that compose them, their average atomic weights and the entropy of their atomic masses.  

 

 

I. INTRODUCTION 
 

A. The Problem of discovering new superconducting materials 
 

In recent decades, the search for superconductors at room temperature has been a top priority for the global scientific 

community. This is because the heavy cooling devices required to operate today's materials make them impractical for 

widespread adoption in modern engineering solutions. 

 

The lack of understanding related to the theory has often been credited as one of the main factors slowing down the search for 

materials with superconductivity at high temperatures. With the emergence of large amounts of data related to the phenomenon 

of superconductivity, the problem has gradually turned to statisticians and computer scientists specializing in learning models 

in order to be able to predict the Tc of certain materials. 

 

B. Overview of the Theory 
 

Since the discovery of the resistanceless electrical conduction of Mercury at 4.2K in 1911 by Kamerlingh Onnes, several 

theories of superconductivity have succeeded. It is often said that the most popular are the London equations, the theory of 

Ginzberg and Landau, and finally the BCS theory, which is considered the most important with its explanation of phenomena 

via the formation of Cooper pairs through an atomic lattice. Although considered successful, the BCS theory fails to explain 

some phenomena of superconductivity at high temperatures such as those observed on materials called Cuprate (copper oxide). 

Therefore, no precise fundamental theory has been developed to explain the overall behavior of superconductors. 

 

This is where large, rough models can help. If trained on enough data, these can potentially "map" atomic characteristics to 

the critical temperature of superconductors, providing a tool for the scientist to predict with reasonable accuracy the Tc of a 

promising material. 

 

 

II. STATE OF THE ART 
 

In order to solve the task of predicting the critical temperature of superconducting hardware, many authors have used empirical 

approaches based on a large number of statistical models. In the case of Kam Hamidieh [1], he trained an XG Boost statistical 

model based on characteristics taken from the chemical formula of the material. These characteristics are mainly based on the 
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thermal conductivity, atomic radius, electronic structure and atomic mass of the elements present in the superconductor. After 

training the model on a database of 21,263 materials from the Japanese National Institute of Materials Science (NIMS), the 

author obtained an out-of-sample RMSE of 9.4 K and an out-of-sample R2 is 0.92. 

 

As for Thanh Dung Le & all [2], they opted for a model called Bayesian neural network using again the characteristics taken 

from superconducting chemical elements and their respective formula to predict the critical temperature Tc. After training, 

their R2 was 0.94 and their RMSE was 3.83. 

 

 

III. DESCRIPTION OF THE DATASET 
 

In order to accomplish the task, a dataset of 21 263 superconductors is made available. It also contains 82 attributes of these 

superconductors, including critical temperature. Other attributes are characteristics of materials such as the number of elements 

that compose them, their average atomic weights and the entropy of their atomic masses. These characteristics are available in 

the csv file located in the code that accompanies this article. 

 

 

IV. DESCRIPTION OF THE APPROACH USED 
 

To solve this regression problem, the proposed solution is to use a multilayer perceptron with reread activation functions. 

Indeed, the attributes of the given game do not depend on space (e.g. images) or time (e.g. financial data). Thus, the best deep 

learning approach to use is the multilayer perceptron. In addition, the reread activation function is very useful to prevent certain 

problems such as the vanishing gradient problem. 

 

Also the dimensionality reduction approach will be studied, a principal component analysis (PCA) will be applied to the 

dataset. This analysis allows the dataset to move to a reduced dimensional space by combining the attributes to obtain linear 

combinations of them and potentially increase the accuracy of the model. The architecture of the model is shown in the figure 

below. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Architecture of the model used. 
 
 
In addition, batch normalizations are applied to the outputs of the input layer and hidden layers of the model to allow the model 

to train faster and achieve better results. At the exit of the last hidden layer, a Dropout layer is added to prevent overfitting of 

the model. The latter assigns a 20% probability to each neuron of being deactivated. Finally, only the parameters of the 

multilayer perceptron are trainable, parameters such as the number of dimensions obtained with PCR are hyperparameters that 

should be determined. 

 

 



V. METHODOLOGY AND EXPERIMENTATION 
 

The first step is to load the dataset contained in a csv file and isolate the column that corresponds to the critical temperatures 

of the materials. The dataset is then separated into 3, a training, validation and testing set. For each of these sets, a principal 

component analysis in k dimensions is performed followed by a standard normalization. This standard normalization is 

intended to allow all attributes in the dataset to contribute equally to model training. 

 

For model training, the Adam optimizer is used with a learning rate of 0.002. In the first tests, this optimizer performed better 

than SGD for the same learning rates. The error function used is the average square of errors. This choice of error aims to 

penalize predictions with a large error thanks to the power of 2 in its formula. The next step is to optimize some of the chosen 

hyperparameters. These are shown in the following table: 

 
  

 
 
 
 
 
 
 
 
 

 

Fig. 2. Table of the names of the hyperparameters to be optimized as well as the chosen test interval. 
 
 
The optimization of these hyperparameters is done using python's open-source Optuna library. This library uses algorithms 

such as Tree-structured Parzen Estimator and Grid Search to optimize the search for the best hyperparameters [1]. This 

hyperparameter search process seeks to reduce the validation error of the last training period. Each training performed during 

the iterations, has a fixed number of eras and a fixed batch size that are respectively 10 and 32. Finally, after obtaining the 

optimal hyperparameters, the model is tested on the test dataset while calculating the R-squared coefficient useful for 

measuring the performance of the regression obtained. 

 
 
VI. DISCUSSION OF RESULTS 
 
The hyperparameter configuration determined after optimization with Optuna is shown in the following table: 
 

Description of the hyperparameter Value obtained 
The number of hidden layers in the model. 5 hidden layers 

Number of input and output neurons from each of the 

hidden layers of the model. 
Layer 1:  (input: 20, output: 99)  

Layer 2:  (input: 99, output: 128) 

Layer 3:  (input: 128, output: 43) 

Layer 4:  (input: 43, output: 168) 

Layer 5 :(input 168:  , output: 44) 
The number of dimensions obtained after principal 

component analysis of the dataset. 
20 dimensions 

 

Fig. 3. Table of the names of the hyperparameters to be optimized and their values obtained. 

 

Description hyperparameters Interval tested 
The number of hidden layers in the model. 1 to 5 hidden layers. 

Number of input and output neurons from each of the 

hidden layers of the model. 
10 to 200 neurons. 

The number of dimensions obtained after principal 

component analysis of the dataset. 
10 to 60 dimensions. 



This configuration made it possible to achieve a validation error of 256.95 at the last training period. The mean squares of 

the errors, MSE and the R-squared coefficient of the model in the training and test dataset are shown in the following table: 

 
 
 
 
 

Fig. 4. Table of average squares of errors and coefficients of determination in training and test set. 
  
 
  
An MSE of 343.57 represents an average deviation of 18 Kelvin from the model's true critical temperature. This discrepancy 

may seem very significant. However, despite this uncertainty, the model makes it possible to identify interesting materials 

with which scientists can carry out more rigorous experimental tests. 

 

The R-squared coefficient obtained shows that there is a correlation between the model's predictions and the true critical 

temperatures. It also shows that there is no significant variance between true and predicted values. The model error is mainly 

due to bias in the bias-variance dilemma. Ways to improve the model can be explored. First, it is possible to reduce the 

dimensions of the dataset using other methods such as the t-SNE algorithm. Also, more combinations of hyperparameters can 

be studied if computing power is available. 

 
 
 
VII.  CONCLUSION 
 

In conclusion, the model obtained allows an estimate of the critical temperature of materials with an average uncertainty of 

about 18 Kelvin. Accelerating the discovery and production of superconducting materials can lead to great advances, which 

add great value to society, such as the installation of lossless electrical transmission cables or the production of strong magnetic 

fields used for nuclear fusion, particle accelerators, or simply the "MRI machines" used in hospitals. 
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