Preventing Collapses in Non-Contrastive Self-Supervised Learning

Ayoub.E

Nassim E.M

Introduction

Self-Supervised learning (SSL) has recently emerged as a scalable solution for learning useful representations without expensive labeling.

- By understanding dependencies between streams of multimodal data, those methods are promising for building a grounded understanding & accurate world models for future AI methods.
- Traditionally, contrastive approaches learned representations by minimizing the distance between similar data points while maximizing the distance between dissimilar data points.
- On the other hand, recent non-contrastive SSL methods are showing remarkable performance without any usage of negative pairs.
- For avoiding any type of collapse in the learning process, those methods are introducing changes in their architectures/loss function that are not always well understood.
- Hence, our work was driven by the following question:

How and why successful Non-Contrastive SSL methods avoid any type of collapsing solution?

Collapses

A) Total Collapse

- Trivial solution to a loss function that brings closer similar representations
- Ignore the inputs and produce identical and constant output vectors
- Total collapse of the energy landscape where all points are low-energy
- Prevented in contrastive methods via pushing away embeddings of negative pairs

B) Dimensional / Information Collapse

- Across a batch of different inputs:
- Embedding vectors only span a lower-dimensional subspace
- Variables in the latent representations carry redundant information

- Loss function
- Architectural

SSL

SSL:

- Capturing dependencies between high dimensional signals
- Learning to predict what's next or what's missing induces a strong representation
- Generating a good representation for downstream tasks without labels during training

Architectures

- Predictive, Joint-Embedding, Joint-Embedding-Predictive, ...
- Our focus: Joint-Embedding Architecture (Siamese networks)
- Randomly sample a minibatch of samples
- Apply randomly sampled augmentations
- Representations h produced by base encoder f(.)
- Loss operates on an extra projector/expander space from h
- Only the representation is used for downstream tasks

Regularized Method

 \leftarrow Representation \rightarrow

EBM Framework:

- EBM as a trainable function for assessing incompatibility
- Assign high energy to incompatible pairs of points
- Assign low energy to compatible pairs of points
- Problem: Fitting the energy landscape

Training Paradigms:

A) Contrastive

- Training samples (low-E) vs contrastive samples (high-E) - Loss function should push:
- Positive pairs closer / Negative pairs away
- Examples: InfoNCE
- Problems: Poor scaling in high dimensions, hard negative mining, ...

B) Non-Contrastive

- No contrastive (negative) samples used
- Regularizer that minimize the space of possible low-energy

Non-Contrastive Methods

- **Different Categories**: Info Maximization, Self-Distillation, Clustering.
- Our focus: Information Maximization Methods
- Maximize the Mutual Information between representations of different views from a shared context
- **Barlow-Twin:**

VICREG:

Invariance: Reduce distance between representations Variance: Maintains variance of each embedding dimension above a threshold Covariance: Decorrelates each pair of variables

W-MSE

Adding a whitening operation on the embeddings (Cholesky decomposition) This projects vectors onto a spherical distribution (zero-mean and identity-matrix covariance) 1) Computing the inverse covariance matrix of the embeddings 2) Use its square root as a whitening operator on the embeddings

Tools for Avoiding Collapses

Tracking the Dimensional / Information Collapse:

- Singular Value Decomposition

- Embedding space is identified by the singular value spectrum of the covariance matrix on the embedding. - If the weight matrix W has vanishing singular values, C is also low-rank, indicating collapsed dimensions.

$$C = rac{1}{N} \sum_{i=1}^{N} (\mathbf{z}_i - ar{\mathbf{z}}) (\mathbf{z}_i - ar{\mathbf{z}})^T$$
 $C = USV^T, S = diag(\sigma^k)$

- Entropy of embeddings vectors
- Based on the *MultiView InfoMax principle*:
- Maximize the mutual information between the representations of two different views, X and X', and their corresponding representations, Z and Z':

$$I(Z, X') = H(Z) - H(Z|X') \ge H(Z) + \mathbb{E}_{x'}[\log q(z|x')]$$

- Only minimizing the cross-entropy loss will result to collapse to a trivial solution, thus a collapse.
- Average correlation coefficient
- Measured by averaging the off-diagonal terms of the correlation matrix of the representations.

Barlow Twins

- Drives the normalized cross-correlation matrix of the two embeddings towards the identity

$$\mathcal{L}_{\mathcal{BT}} \triangleq \sum_{i} (1 - \mathcal{C}_{ii})^2 + \lambda \sum_{i} \sum_{j \neq i} {\mathcal{C}_{ii}}^2$$
Diagonal values to Identity Off Diagonal to zero

VICReg

- Avoids the collapses with two regularization terms applied to both embeddings separately. - Multi-Modality advantage against B.T
- Use the covariance matrix of each branch individually for imposing variance / decorrelation
- Fewer constraints on the architecture compared to other methods

W-MSE

- Using a full whitening of the latent space features is sufficient to avoid collapsed representations

- First scatters all the sample representations in a spherical distribution - Then penalizes the positive pairs which are far from each other

- Downside to the whitening operator on the embeddings: - Matrix inversion is a very costly and potentially unstable operation.

Information-Theoretic View

- Information Bottleneck Principle for SSL
- Desirable representation should be as informative as possible about the sample represented While being as invariant (non-informative) as possible to distortions (data augmentations)

 $\mathcal{IB}_{\theta} \triangleq I(Z_{\theta}, Y) - \beta I(Z_{\theta}, X)$

- β is a positive scalar trading off the desire of preserving information and being invariant to distortions.

 $\mathcal{IB}_{ heta} = [H(Z_{ heta}) - H(Z_{ heta}|Y)] - eta[H(Z_{ heta}) - H(Z_{ heta}|X)]$

Entropy of the representation conditioned on a specific distorted sample cancels to 0 as the function f_{θ} is deterministic Hence the representation Z_{θ} conditioned on the input sample Y is perfectly known and has zero entropy.

 $\mathcal{IB}_{ heta} = H(Z_{ heta}|X) + rac{1-eta}{eta}H(Z_{ heta}) \quad riangleq \quad \mathcal{IB}_{ heta} = \; \mathbb{E}_X log \; |\mathcal{C}_{Z_{ heta}|X}| + rac{1-eta}{eta} \; log \; |\mathcal{C}_{Z_{ heta}}|$

- Simplifying assumption: Representation Z is distributed as a Gaussian (For Friendly Entropy Estimation) Entropy of a Gaussian distribution: logarithm of the determinant of its covariance function

Additional simplifications and approximations: Replacing the $1-\beta$ / β by a new positive constant λ , preceded by a negative sign. Replace the second term of the loss (maximizing the information about samples) by simply minimizing the Frobenius norm of the cross-correlation matrix (off-diagonal terms to 0) (diagonal terms fixed due to rescaling), which creates the surrogate objective that decorrelate all output units

Representations

Distorted images

lmages