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Introduction

~

Self-Supervised learning (SSL) has recently emerged as a scalable solution for learning useful

representations without expensive labeling.

By understanding dependencies between streams of multimodal data, those methods are promising

for building a grounded understanding & accurate world models for future AI methods.

Traditionally, contrastive approaches learned representations by minimizing the distance between

similar data points while maximizing the distance between dissimilar data points.

On the other hand, recent non-contrastive SSL methods are showing remarkable performance

without any usage of negative pairs.

For avoiding any type of collapse in the learning process, those methods are introducing changes
in their architectures/loss function that are not always well understood.

Hence, our work was driven by the following question:

How and why successful Non-Contrastive SSL methods avoid any type of collapsing solution?
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SSL

SSL:

- Capturing dependencies between high dimensional signals

- Learning to predict what’s next or what’s missing induces a strong representation
- Generating a good representation for downstream tasks without labels during training

Architectures

- Predictive, Joint-Embedding, Joint-Embedding-Predictive, ...
- Our focus: Joint-Embedding Architecture (Siamese networks)

- Randomly sample a minibatch of samples

- Apply randomly sampled augmentations

- Representations 4 produced by base encoder 1 (.)

- Loss operates on an extra projector/expander space from /
- Only the representation 1s used for downstream tasks

EBM Framework:

EBM as a trainable function for assessing incompatibility

Assign high energy to incompatible pairs of points

- Assign low energy to compatible pairs of points

Problem: Fitting the energy landscape

Training Paradigms:

A) Contrastive

- Training samples (low-E) vs contrastive samples (high-E)
- Loss function should push:

- Positive pairs closer / Negative pairs away

- Examples: InfoNCE

- Problems: Poor scaling in high dimensions, hard negative mining, ...

B) Non-Contrastive
- No contrastive (negative) samples used
- Regularizer that minimize the space of possible low-energy

Maximize or Minimize Agreement
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Collapses

A) Total Collapse

- Ignore the mputs and produce 1dentical and constant output vectors

B) Dimensional / Information Collapse

- Across a batch of different inputs:
- Embedding vectors only span a lower-dimensional subspace

- Tools to avoid:
- Loss function
- Architectural

- Variables 1n the latent representations carry redundant information

- Trivial solution to a loss function that brings closer similar representations

- Total collapse of the energy landscape where all points are low-energy
- Prevented 1n contrastive methods via pushing away embeddings of negative pairs
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Non-Contrastive Methods

- QOur focus: Information Maximization Methods

- Different Categories: Info Maximization, Self-Distillation, Clustering.

- Maximize the Mutual Information between representations of different views from a shared context

- Barlow-Twin:
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Invariance: Reduce distance between representations
Variance: Maintains variance of each embedding dimension above a threshold
Covariance: Decorrelates each pair of variables
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Adding a whitening operation on the embeddings (Cholesky decomposition)

This projects vectors onto a spherical distribution (zero-mean and identity-matrix covariance)
1) Computing the inverse covariance matrix of the embeddings

2) Use 1ts square root as a whitening operator on the embeddings

Tools for Avoiding Collapses

Tracking the Dimensional / Information Collapse:

- Singular Value Decomposition
- Embedding space 1s 1identified by the singular value spectrum of the covariance matrix on the embedding.
- If the weight matrix W has vanishing singular values, C 1s also low-rank, indicating collapsed dimensions.

C=USVT,S = diag(c")

- Entropy of embeddings vectors

- Based on the MultiView InfoMax principle:

- Maximize the mutual information between the representations of two different views, X and X', and their
corresponding representations, Z and 7'

I(Z,X') = H(Z) — H(Z|X") 2 H(Z) + Ex [log q(2|2")]

- Only minimizing the cross-entropy loss will result to collapse to a trivial solution, thus a collapse.

- Average correlation coefficient
- Measured by averaging the off-diagonal terms of the correlation matrix of the representations.

Barlow Twins

- Drives the normalized cross-correlation matrix of the two embeddings towards the 1dentity

Lpr = Z(l —Ci)* + Az Z Cyi”
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Diagonal values to Identity Off Diagonal to zero

VICReg

- Avoids the collapses with two regularization terms applied to both embeddings separately.
- Multi-Modality advantage against B.T

- Use the covariance matrix of each branch individually for imposing variance / decorrelation
- Fewer constraints on the architecture compared to other methods

W-MSE

- Using a full whitening of the latent space features 1s sufficient to avoid collapsed representations

- First scatters all the sample representations in a spherical distribution
- Then penalizes the positive pairs which are far from each other

- Downside to the whitening operator on the embeddings:
- Matrix inversion 1s a very costly and potentially unstable operation.
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Information-Theoretic View
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A
IBQ = I(Zg, Y) — IBI(ZQ, X) Represen-
tations
- B is a positive scalar trading off the desire of preserving information and being invariant to distortions.
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- Entropy of the representation conditioned on a specific distorted sample cancels to 0 as the function f, is deterministic
- Hence the representation Z,conditioned on the input sample Y is perfectly known and has zero entropy. '
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- Simplifying assumption: Representation Z is distributed as a Gaussian (For Friendly Entropy Estimation)
- Entropy of a Gaussian distribution: logarithm of the determinant of its covariance function

- Additional simplifications and approximations: Replacing the 1-J/ B by a new positive constant /., preceded by a negative sign. Replace the second term of the loss (maximizing the information about samples) by simply minimizing

Information Bottleneck Principle for SSL:
Desirable representation should be as informative as possible about the sample represented
While being as invariant (non-informative) as possible to distortions (data augmentations)

the Frobenius norm of the cross-correlation matrix (off-diagonal terms to 0) (diagonal terms fixed due to rescaling), which creates the surrogate objective that decorrelate all output units
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