
Lab 1 --- Fundamentals of Mathematical modeling

- Introduction on subject:

As empirical methodologies used in Machine Learning are finding new applications everyday, many people seem to believe that AI is

potentially going to replace mechanistic modeling in the field of science and engineering. The goal of this course is to review the

main categories of mechanistic models and fuse them with data-driven techniques in order to create new hybrid models that are

forming the emergent field of Scientific Machine Learning (SciML).

Indeed, as we progress in the era of Big-Data, the opportunity of merging knowledge-built models in physics and engineering with

empirical models used in statistics has the potential of providing strong knowledge-based AI techniques to the research

community for the next decades. Of course, the implementation of those models go hand in hand with the availability of high

quality datasets about a specific system or phenomena, otherwise the model validity will be strongly limited unless new

experimental data is provided or new simulation tools are developped for dataset generation.

Along with an overview of the theoric intuition behind the main modeling techniques, implementations with the upcoming new high-

perfomance computing (HPC) language called julia will be presented in order to provide a strong practical aspect to this course.

In order to introduce the student to the new language, a dedicated laboratory will be made for showcasing the main guideline and

methodologies related to this language. Now let us introduce the general field of mathematical modeling in this laboratory in order

to lay strong foundations for the next laboratories.

- List of section presented in this laboratory:

1. Why Modeling?

2. Type of models

3. Model components

4. Modelization process

>
>
>
>

- Instructions:

Completed laboratory need to be sent to the teacher before midnight

1) Why Modeling?

- Overview:

Taking a step back and looking at the real world, we can describe almost all our surroundings as interacting phenomenas or

systems that can be characterized by specific features (or variables) forming a whole zoo of non-linear functions. Of course, as

those phenomenas are often very complex to manipulate and control, humans have created one of the most innovative tool when it

comes to solving problems: mathematical modeling.

Indeed, by discretizing a specific phenomena into model parameters and equations, it is now possible to simulate and investigate

the dynamic behaviour of complex systems, hence allowing us to take better decisions with tools like optimization, uncertainty

quantification, automation, and more. In fact, by merging the critical mathematics developped over centuries like calculus with

the new modern hardware and software of today, we have the possibility of leveraging computer programs to implement algorithms

and find optimal solutions to our models equations.

This innovation is critical as it is cost & time efficient to avoid the thousands iterations past generations had to make on their

designs or solutions. Now in simple words, a model can be seen as a simplification of a phenomena in order to reduce its natural

complexity.

2) Type of models

When it comes to the different type of models, many categories were developed over the years in order to describe all kind of

phenomenas. Naturally, choosing the right type of model depends on the task we must perform. Here, I will distinguish three

general type of models of importance for our laboratories: mechanistic models, empirical models, and hybrid models. Across these

models, other characteristics may be used to describe the inner workings of these models.

1) Mechanisitic models:

Models based on the internal mechanics of a system, therefore based on a priori information about the

related phenomena. In most of the case, they involve physically interpretable parameters that allow

better behaviours predictions of any known system. Like we will see later, the fundamental tool used in

those models are differential equations.

2) Empirical models:

Often called blackbox model or simply statistical models, those may be implemented only with

experimental data about a phenomena, hence using no a priori information. Those are the type of model

used in Machine Learning where datasets define a set of parameters that approximate a function in

order to produce an optimal input-output mapping. Their disadvantages is that they require large

amount of data in order to be well fitted. But once this requirement is satisfied, they represent a very

powerfull tool for modelizing systems. Example are regression based models, probabilistic models and

neural networks.

3) Hybrid models:

Models where both a priori information about a phenomena and data-driven approximation of some

parameters are used to describe the dynamics of a system more precisely. In this category, we may

include any technique that merge tools taken from the two last methodologies. For example, training

neural networks for satisfying the conditions required by a differential equation (find function whose

derivative satisfies ODE conditions) may be considered as a numerical method that emerge from both

categories.

Now that we have presented the main categories, other classifications may be used to differentiate models. Here are some of the

most importants (familiarity with those is assumed):

Deterministic vs stochastic models/parameters

Static vs dynamic models

Continuous vs discrete models

Number and type of equations (algebraic, ODEs, PDEs, SDEs...)

Linear vs nonlinear

Dimensions

3) Model components

- Overview:

Equations are the main building block of mathematical models. In physical science, they are often derived from conservation

principles (energy, mass, momentum, charge) or specific fundamental principles that describe a system like rate equations

(conduction, radiation...) & property relationships specific to a system.

Simply, equations can be seen as mathematical description of a phenomena under the form of algebraic expressions or differential

equations. Like you may know, differential equations with one independent variable are called ordinary differential equations (ODEs)

while those that are dependant on two or more independent variables are referred as partial differential equations (PDEs). The

governing differential or algebraic equations may be accompanied of the boundary conditions (if spatial system) and/or the initial

conditions of the system. Indeed, the former possess position as the independent variable and require conditions on all the

boundaries of the dependent variables while the ladder involve time as the independent variable and require starting values for the

dependent variables.

This is because different type of problems require different solutions. While some consist of direct problems where we need to

determine the system response, others are inverse problems where we are required to find unknown forcing functions. In other

cases, estimation of system parameters or Initial Values may be required.

Dependant Variable = Function (Independent Variables, System Parameters, Forcing Functions)

Independent variables: The dimensions (ex: location and/or time)

Dependent variables: State of the system (state variable vector forming the state space)

System parameters: System’s properties

Forcing functions: Stimuli acting on the system (ex: Boundary and/or Initial conditions)

In order to produce solutions to these equations forming our model, we may choose the analytical method (if it is available) in order

to produce an exact mathematical solution. As they are often impossible or too difficult to produce for complex functions, the most

common methods involve discretizing functions and computing approximative numerical solutions using an appropriate numerical

algorithms implemented on a computer. This results then in approximate values of the solution at certain discrete points x0, x1, ... ,

xn (n ∈ N). Of course, choosing the right algorithm based on factors like stiffness or the order of convergence is critical for

obtaining optimal solutions. In the subsequent laboratories, we will implement the main methodologies used to compute traditionnal

solutions of ODEs and PDEs. For now, here are the main methods for solving equations:

1) Methods for algebraic equations:

Gaussian elimination (linear)

Bisection (non-linear / root finding)

Newton–Raphson (non-linear / root finding)

Secant methods (non-linear / root finding)

Gradient methods (non-linear / root finding)

2) Analytical methods for differential equations:

Fourier series, separation of variables

Fourier integrals and Fourier transforms

Laplace transforms

Integral methods

Similarity methods

3) Numerical methods for differential equations:

Runge–Kutta methods (Euler’s method, Heun’s method...)

Finite difference methods

Finite element methods

Spectral methods

Finite volume methods

Neural Network

4) System Modelization

Across this final section, I will present a brief overview of a traditionnal problem-solving paradigm where scientific computing is

used as the main tool for solving real world problems and implementing optimal solutions:

1) Real world problem task

2) Gather data from simulations or real experiments

3) Model formulation as a mathematical problem

4) Make assumption if well-posed problem

5) Formulate equations or systems of equations

6) Writing optimal software

7) Solve equations with algorithms

8) Interpret solutions

9) Compare with data

10) If mismatch, return to model assumption step

11) Otherwise, implement real world solution by automating, optimizing, predicting...

It is important to understand that when talking about solving a model, two fundamental factors need to be taken into account:

Computational complexity

Size of the problem

5) Geometric modeling

Building models is not all about modeling systems. Indeed, we can build model to represent all kind of physical things. For

example, the field of Geometric modeling & computer aided design (CAD) is focused on developing methods and algorithms for the

mathematical description of shapes. Popular sub-topics are:

Surface Modeling (describing the surface boundaries)

Solid Modeling (solid objects)

Rendering models

Lab 2 -- Scientific Computing & Julia

- Introduction:

This laboratory will be focused on introducing the field of scientific computing and the emerging high-performance language

called Julia, which will be used along other sections of the course to solve different type of equations numerically.

In the field of high-performance programming, Fortran was during many year the leading champion in solving complex scientific

problems. But as other competitor emerged, this may not be the case today. Indeed, Julia is said to combine the speed of

languages like C or Fortran, with the ease of use of Matlab or Python, which really make it appealing to modern era programmers.

- List of section presented in this laboratory:

1. Scientific Computing Basics

2. Julia language

3. Designing efficient I/O algorithms

4. Parallel Computing Paradigms

5. GPU Computing

- Instructions:

Completed laboratory need to be sent to the teacher before midnight

1) Scientific Computing & Julia

- Overview:

Scientific computing can be defined as the field of mathematical modeling in science and engineering where we study how to

exploit computers in the solution of technical and scientific problems.

By using the growing computing power of processors, we can now numerically find solutions to complex problems where analytical

solutions that gives the exact right answers are too difficult to obtain. In fact, numerical methods allow us to approximately solve

maths problems while dealing with a common tradeoff: computation time/ressources vs accuracy of our approximation. Designing

efficient numerical algorithm is a real challenge for complex problems like we will see later.

- Julia language:

Adress part of the two-language problem:

Developing in a high-level language (ex: Python) and when implementing, need of converting to low-level kernel.

Affect Productivity & Efficiency

Julia was partly born to create a high-level language that possess the C-level performance.

Just in time (JIT) compiler:

Efficient Design is the key to Julia efficiency. (not better hardware or better compilers)

Not interpreted language, but compiled one;

Compiles all code (by default) to machine code before running it

sophisticated compilation techniques

Information can be inferred from most programs before execution begins

Designed to make it easy to statically analyze its data types.

Type-stability of functions:

any function call within the function is also type-stable

compiler can know types of variables, hence can compile function with the full amount of optimizations

(compiler can know the types of a and b before calling fct)

key for raw performance while maintaining the syntax/ease-of-use

Type inference:

In languages like C, programmer need to declare the types of variables in the program

In interpreted languages like Python, types are checked at runtime

Before compilation, Julia use a type inference algorithm to finds out types

Julia use in Supercomputing environments:

https://www.youtube.com/watch?v=8sOgH5ls2S4&ab_channel=TheJuliaProgrammingLanguage

https://www.hpcwire.com/2020/01/14/julia-programmings-dramatic-rise-in-hpc-and-elsewhere/

- Practical Section:

You use the space below to try out some code.

Use the documentation (https://docs.julialang.org/en/v1/)

https://github.com/Datseris/Zero2Hero-JuliaWorkshop

https://github.com/mitmath/julia-mit/blob/master/Tutorial.ipynb

https://github.com/Datseris/Zero2Hero-JuliaWorkshop/blob/master/3-Ecosystem.ipynb

https://github.com/vbartle/VMLS-Companions/tree/master/VMLS%20Julia%20Companion

125

4-element Vector{Int64}:

 15

 2

 6

 -9

4-element Vector{Int64}:

 1

 17

 32

 15

4-element Vector{Int64}:

 16

 19

 38

 6

In [2]: 5^3

Out[2]:

In [3]: y = [15, 2, 6, -9]

Out[3]:

In [4]: x = [1, 17, 32, 15]

Out[4]:

In [5]: x + y

Out[5]:

https://www.youtube.com/watch?v=8sOgH5ls2S4&ab_channel=TheJuliaProgrammingLanguage
https://www.hpcwire.com/2020/01/14/julia-programmings-dramatic-rise-in-hpc-and-elsewhere/
https://docs.julialang.org/en/v1/
https://github.com/Datseris/Zero2Hero-JuliaWorkshop
https://github.com/mitmath/julia-mit/blob/master/Tutorial.ipynb
https://github.com/Datseris/Zero2Hero-JuliaWorkshop/blob/master/3-Ecosystem.ipynb
https://github.com/vbartle/VMLS-Companions/tree/master/VMLS%20Julia%20Companion

1×4 transpose(::Vector{Int64}) with eltype Int64:

 1 17 32 15

106

3) Designing efficient I/O algorithms

Errors & Precision:
>

Across the field of numerical analysis, managing the solution presicion & stability is a key aspect. Indeed, we

are always focused on avoiding numerical instabiliy and efficiently contourning numerical problems.

computers store information in binary as a floating-point:

Series of ones and zeroes that represent a number and its corresponding exponent

pi = 3.14 x 10^0 = 1.1001001 x 2^1

Single-Precision:

one bit is used to tell whether the number is positive or negative

Eight bits are reserved for the exponent (because binary, is 2)

Remaining 23 bits are used to represent the digits that make up the number, called the significand.

Double precision

11 bits for the exponent

52 bits for the significand

Expand the range and size of numbers it can represent

Multiprecision arithmetic:

Floating point arithmetic where multiple precisions are supported.

Can be more efficient to use

Problems to avoid:

Catastrophic Cancellation (close floating points where largest decimal places are cancelled)

Numerical unstability (many significant digits get lost)

Use of lower precision case (ex: Float32 or a Float16):

Case where errors are not accumulated

Uncertainty quantification (UQ)

In [6]: transpose(x)

Out[6]:

In [7]: transpose(x) * y

Out[7]:

identification and quantification of sources of uncertainty

Truncation errors

Numerical errors

Randomness

multiple method for dealing with floating point uncertainties:

ex: interval arithemetic (work rigorously on sets of real numbers)

4) Parallel Computing Paradigms

SIMD:

Parallelism in a single core

Processors can run multiple commands simulataniously on specially structured data.

"Single Instruction Multiple Data"

How to do SIMD:

Aligned Values

LLVM's autovectorizer

Amount of vectorization is heavily dependent on your architecture

loop-level parallelism: loop vectorization

Also SLP supervectorization

Multithreading

Every process has multiple threads which share a single heap

When multiple threads are executed simultaniously we have multithreaded parallelism

Important Concepts:

OpenMP and MPI

Shared vs. distributed memory

...

5) GPU Computing

Overview:

Originally designed for fast graphics calculations

Found use in accelerating many kinds of numerical code (speedups in algorithms)

Ability to run many threads—in the order of hundreds or thousands—in parallel

Hence faster parallel computations (ex: deep learning training...)

CUDA

Programming model used by NVIDIA for general-purpose computing on its GPUs

Typically programmed in C++

GPU model:

GPU as low precision computer with hundreds/thousands of processor cores.

Cores can all run simultaneously, performing the same operations on multiple data points in one cycle.

Operations may be slow, but its the parallelism that makes it fast.

GPU has its own memory, and its cores can operate only on data within that memory.

GPU programs can spend significant amount of time in copying data from main (CPU) memory

Good video & Paper:

https://www.youtube.com/watch?v=Hz9IMJuW5hU&ab_channel=TheJuliaProgrammingLanguage

https://ieeexplore.ieee.org/abstract/document/8471188

https://www.youtube.com/watch?v=Hz9IMJuW5hU&ab_channel=TheJuliaProgrammingLanguage
https://ieeexplore.ieee.org/abstract/document/8471188

Lab 3 -- Applied Algebra with Julia

- Introduction:

Review of the main methods used in linear & non-linear algebra applied with Julia. Theoric background is assumed, nonetheless,

some intuitions are often provided and links for further comprehension. Two main sections are presented: numerical methods for

Linear Algebra and numerical methods for Non-linear Algebra.

- List of section presented in this laboratory:

1. Numerical methods: Linear Algebra

 - Gaussian elimination

 - LU decomposition

 - Least squares regression

2. Numerical methods: Non-linear Algebra

 - Bisection method

 - Newton–Raphson method

 - Secant method

- Instructions:

Completed laboratory need to be sent to the teacher before midnight

1) Linear Algebra

- Review:

When faced with simultaneous algebraic linear equations involving n unknown quantities usually written in the matrix form A * x = b,

the objective is often to solve for the "unknowns" given and . The traditionnal form of equations

is as follow:

In order to find those solutions, we perform manipulations of matrices using row operations like multiplication, addition,

substraction, or exchange. Common direct matrix solution methods are the Gaussian elimination and LU decomposition, which

both use row operations to manipulate the matrices in order to solve for the unknown variables. Here is an important review before

switching on to the numerical methods.
>

- Overdetermined Systems: More equations than unknowns (no solution can satisfy all equations) (ex: curve fitting)

- Underdetermined Systems: More unknowns than equations (generally infnite number of solutions) (optimization

used)

- Square System: Same number of equations as unknowns (generally lead to unique solution)

x1, … , xk a11, … , ank y1, … , yn

y1 = a11x1 + a12x2 + ⋯ + a1kxk

⋮

yn = an1x1 + an2x2 + ⋯ + ankxk

- Gaussian elimination

Two basic steps:

(1) Eliminate the elements below the diagonal and

(2) Back substitute to get the solution

- LU decomposition

Process of separating the time-consuming elimination part of the Gauss elimination method from the back

substitution manipulations of the right-hand-side vector b.

The decomposition finds a lower triangular matrix and an upper triangular matrix such that .

Any square matrix can be decomposed or factored into the product of a lower and upper diagonal matrix: A = L ×

U

Using A=LU, the system of linear equations A·x= b can be written as L × d = b

The LU decomposition algorithm is:

Decompose or factor A into LU.

Use forward substitution to solve L·d =b for d.

Use back substitution to solve U·x = d for x.

- Least squares regression

Minimize objective function.

To fnd the values of a0 and a1 that minimize S

LU L U LU = A

Set the derivatives equal to zero

Matrix form solution of the two simultaneous equations for the unknowns a0 and a1

Gives the coeffcients a0 and a1. (best straight line curve ft to the data)

- Example 1:

LU decomposition

LU{Float64, Matrix{Float64}}

L factor:

6×6 Matrix{Float64}:

 1.0 0.0 0.0 0.0 0.0 0.0

 0.741485 1.0 0.0 0.0 0.0 0.0

 0.0134704 0.314503 1.0 0.0 0.0 0.0

 0.834033 0.969018 -0.0131717 1.0 0.0 0.0

 0.9115 -0.72197 -0.189969 -0.778272 1.0 0.0

 0.712832 0.481945 -0.209915 0.728702 -0.114776 1.0

U factor:

6×6 Matrix{Float64}:

 0.921936 0.590953 0.556166 0.629141 0.673549 0.610323

 0.0 0.397457 -0.214506 -0.401518 -0.0553917 0.0362034

 0.0 0.0 1.00183 0.166908 0.351387 0.0989971

 0.0 0.0 0.0 0.629181 -0.0388252 -0.111251

 0.0 0.0 0.0 0.0 -0.2179 -0.0457462

 0.0 0.0 0.0 0.0 0.0 0.296514

2) Non-Linear Algebra

- Review:

When faced with a nonlinear algebraic equation of the form f(x) = 0, most of the nonlinear equations can not be solved exactly

(execptions: quadratic...) as the value x for which f(x)=0, or simply the root of the function, is typically impossible to solve explicitly.

Therefore, we can use multiple types of algorithms to solve root fnding problems. Often, those start by guessing procedure and

follow on with iterative methods to solve numerically the equation.Of course, the challenge is to find an optimal iterative method

that will converge rapidly within an error tolerance.

Now we will see the numerical methods to solve for the roots of a single non-linear equation that can be extended to simultaneous

sets of nonlinear equations. Indeed, those methods can be used for any number of simultaneous non-linear
equations, as long as

reasonable initial guesses are made to find the roots. But remember, attention need to be paid to convergence issues as the number

of simultaneous equations increases.

It is important to understand that no single method is best for all situations. The key is understanding the strengths and weaknesses

of the different numerical techniques and select the appropriate strategy.

In [10]: using LinearAlgebra

N = 6

A = rand(N,N)

b = rand(N)

Af = factorize(A)

https://github.com/QuantEcon/lecture-julia.myst/blob/main/lectures/tools_and_techniques/numerical_linear_algebra.md

Out[10]:

- Bisection method

Incremental search methods that take the interval containing the root and divid it in halves successively. This procedure is repeated

until some desired accuracy criterion is reached. To start the search, an interval that surrounds the root must be located. Stopping

criterias can be based on multiple factors like reaching a specific tolerance change between the most recent iterations of the root.

- Newton–Raphson method

Uses the tangent to the graph of f(x) at any point and determines where the tangent intersects the x-axis. This intersection is

usually an improved estimate of the root. The process is continued until some stopping criterion is met.

The Newton–Raphson is efficient when it converges but is not always guaranteed to converge. As a general-purpose algorithm for

finding zeros of a function, it has three drawbacks:

The function f(x) must be smooth.

It might not be convenient to compute the derivative f′(x).

The starting guess must be suffciently close to the root.

Generally converges rapidly, it could also completely diverge from the root.

Caused by the nature of the function and the initial guess.

For instance, if initial guess happens at a local maximum or minimum (derivative is zero), error division by 0

- Secant method

For certain functions, the derivative required with the Newton–Raphson method may be impossible

Alternative: use the secant rather than the tangent to locate an improved estimate

Derivative is estimated with a finite difference approximation using the two most recent iterates

- Example 4:

Newton–Raphson method

In [9]: using LinearAlgebra

function newton(f, Df, x1; kmax = 20, tol = 1e-6)

 x = x1

 fnorms = zeros(0,1)

 for k = 1:kmax

 fk = f(x)

 fnorms = [fnorms; norm(fk)]

 if norm(fk) < tol

 break

 end;

 x = x - Df(x) \ fk

 end

 return x, fnorms

end

f(x) = (exp(x)-exp(-x)) / (exp(x)+exp(-x));

Df(x) = 4 / (exp(x) + exp(-x))^2;

try with $x^{(1)} = 0.95

x, fnorms = newton(f,Df,0.95); f(x)

fnorms

using Plots

plot(fnorms, shape=:circle, legend = false, xlabel = "k",ylabel = "|f|")

link: https://github.com/vbartle/VMLS-Companions/blob/master/VMLS%20Julia%20Companion/VMLS%20Julia%2C%20Ch.18%20Nonline

Out[9]:

- Start with basics:

Linear Algebra (https://github.com/vbartle/VMLS-Companions/tree/master/VMLS%20Julia%20Companion)

https://julia.quantecon.org/tools_and_techniques/linear_algebra.html

http://vmls-book.stanford.edu/vmls-julia-companion.pdf

https://github.com/Datseris/Zero2Hero-JuliaWorkshop

https://github.com/mitmath/julia-mit/blob/master/Tutorial.ipynb

https://github.com/Datseris/Zero2Hero-JuliaWorkshop/blob/master/3-Ecosystem.ipynb

https://github.com/vbartle/VMLS-Companions/tree/master/VMLS%20Julia%20Companion

https://github.com/vbartle/VMLS-Companions/tree/master/VMLS%20Julia%20Companion
https://julia.quantecon.org/tools_and_techniques/linear_algebra.html
http://vmls-book.stanford.edu/vmls-julia-companion.pdf
https://github.com/Datseris/Zero2Hero-JuliaWorkshop
https://github.com/mitmath/julia-mit/blob/master/Tutorial.ipynb
https://github.com/Datseris/Zero2Hero-JuliaWorkshop/blob/master/3-Ecosystem.ipynb
https://github.com/vbartle/VMLS-Companions/tree/master/VMLS%20Julia%20Companion

Lab 4 -- Mechanistic models

- Introduction:

Across this laboratory, we will introduce the mechanistic models, which can be seen as the classical method to quantify and

modelize any systems. Indeed, by using equations representing underlying knowledge of the system, those models are great at

extrapolating, can be explainable, and they can be fitted with small numbers of data.

Here, we will focus mainly on numerical methods for solving those equations, altough a review of the analytical solving method is

provided.

- List of section presented in this laboratory:

1. ODEs models

2. PDEs models

3. SDEs models

- Instructions:

Completed laboratory need to be sent to the teacher before midnight.

1) ODEs Equations

- Overview:

A differential equation can be understood as something involving an unknow function and its derivatives, where the unkown

function represents the "solution" we are seeking. Unlike standard algebraic equations where the unknown quantity Y is some

particular value that satisfy an equation, the unknown y in ODEs is actually a function itself. By replacing Y with a function Y(t)

which satisfies our specific equation(s), we are often able to solve our problem. Here is a simple first-order ODE with the unknown

function y(t):

Other common notation:

U: State values (dependant variable) (can be a vector [u1, u2, u3])

P: Parameters

T: Time (independant variable)

To solve an ODE for specific points, we often require extra conditions. The first category are initial value problems where a system

of equation y'(t) = F(t, y(t)) is given with y(a) = y0 as an initial value that precise the value of the unknown function at a given point

in the domain, hence giving us requirements to satisfy for our solution to the differential equation. The second category are called

boundary value problems where conditions are imposed at more than one point of our unknown function, therefore guiding us

when it comes to selecting solutions for our ODE. In some cases, it is usefull to convert a boundary value problem into an initial

y′(t) = F(t, y(t))

u' = f(u, p, t)

value problem through a process called the shooting method as it allows us to make use of a simple iterative scheme to obtain a

solution.

- Closed-form solutions:

When solving ODEs, it is always prefered to get a closed form solution (analytical) to our problem, which means getting an equation

given as formula of traditionnal known functions. Indeed, it is desirable because we can extract much more content about the

system compared to a numerical method, hence providing us deeper understanding of the effects that the model parameters have

on the solution. But having closed form solutions is rare due to the nonlinearity and strong coupling between variables, which guide

us to approximate the soluton by the mean of numerical methods that implement algorithms on the computer. Now here are three

common methods to solve analytically an ODE:

1) Solution by Integration

Integrate the equation (using the fundamental theorem calculus) which leads to the general solution.

May be applied to linear first order equations

Example: https://www.youtube.com/watch?

v=GIpOcHNK7eQ&list=PLwIFHT1FWIUJYuP5y6YEM4WWrY4kEmIuS&index=13&ab_channel=commutant

2) Separation of variables method:

Separating the variables on different sides of the equation ("Ratio of functions")

Example: https://www.youtube.com/watch?

v=8xG_Xg6X2MQ&list=PLwIFHT1FWIUJYuP5y6YEM4WWrY4kEmIuS&index=7&ab_channel=commutant

3) Other methods: Variation of constants method, ...

- Numerical solutions: Runge–Kutta methods

When we are left without any closed-form solution to our problem, we use numerical algorithm that compute approximation of the

unknown y(x) at some given points (x0, x1...xn), hence providing us our solution as (y0, y1...yn) where yi represent the numerical

approximations of y(xi). In order to compute numerical solutions, we discretize our continuous equation using different methods.

Here are the main ones:

1) The Euler Method (1st order)

The simplest discretization is the Euler method. The Euler method can be thought of as a simple approximation

replacing dt with a small non-infinitesimal Δt. Euler's method uses the line tangent to the function at the beginning

of the interval as an estimate of the slope of the function over the interval, assuming that if the step size is small, the

error will be small. However, even when extremely small step sizes are used, over a large number of steps the error

starts to accumulate and the estimate diverges from the actual functional value

2) Heun Method (2nd order)

Euler's method is used as the foundation for Heun's method: Heun's Method considers the tangent lines to the

solution curve at both ends of the interval, one which overestimates, and one which underestimates the ideal vertical

coordinates. Hence, it can be called the average slope method.

https://www.youtube.com/watch?v=GIpOcHNK7eQ&list=PLwIFHT1FWIUJYuP5y6YEM4WWrY4kEmIuS&index=13&ab_channel=commutant
https://www.youtube.com/watch?v=8xG_Xg6X2MQ&list=PLwIFHT1FWIUJYuP5y6YEM4WWrY4kEmIuS&index=7&ab_channel=commutant

- To remember:

When it comes to choosing the optimal solver for our equation, many factors need to be considered. For example,

how precise do we want our solution to be (abstol & reltol), the number of steps the solver should take... There is

always a trade off between accuracy and speed, and based on your requirements for your solution, you adjust the

parameters.

In julia, when executing the solving command "solve(prob)", the DifferentialEquations.jl package choose naturally the

"best" algorithm for the problem. Of course, we can enter specific requirements if we desire more control on the

solver. For example, when facing stiff ODEs, which means equations that leads to numerically unstable solutions, we

can directly input the command "alg_hints = [:stiff]" to guide the solver for optimal solution. Needless to say, much

more information is available on the website of the package and I strongly recommand anyone to visit it before moving

on to the next section. Here is the link: https://diffeq.sciml.ai/stable/.

Review Methodology:

1) Define a problem: Establishing the equations, the initial condition, and the timespan to solve over.

2) Solve the problem: Choosing a solver Algorithm & tuning its parameters

3) Analyze the solution: (ex: Plotting)

- Example 1: Scalar ODE (Radioactive Decay)

= f(u, p, t)
du

dt

t ∈ [0, 0]t ∈ [0, 1]

f(u, p, t) = −C₁ ∗ u

In [3]: #Importing packages

using DifferentialEquations, Plots

gr()

#Setup

#Half-life of Carbon-14 is 5,730 years.

C₁ = 5.730

u₀ = 1.0

tspan = (0.0, 1.0)

#Define the problem

radioactivedecay(u,p,t) = -C₁*u

#Pass to solver

prob = ODEProblem(radioactivedecay,u₀,tspan)

sol = solve(prob,Tsit5())

#Plot

plot(sol,linewidth=2,title ="Carbon-14 half-life", xaxis = "Time in thousands of years", yaxis = "Percentage left", label
plot!(sol.t, t->exp(-C₁*t),lw=3,ls=:dash,label="Analytical Solution")

#Source: https://tutorials.sciml.ai/html/models/01-classical_physics.html

Out[3]:

https://diffeq.sciml.ai/stable/

- Example 2: Lorenz System of Equations

Initial condition vector: u0 = [1.0,0.0,0.0]

Parameters: p = (10,28,8/3)

Solve on timespan: tspan = (0.0,100.0)

= σ(y − x)
dx

dt

= x(ρ − z) − y
dy

dt

= xy − βz
dz

dt

In [1]: # Writing the differential equations

function lorenz!(du,u,p,t)

 σ,ρ,β = p

 du[1] = σ*(u[2]-u[1])

 du[2] = u[1]*(ρ-u[3]) - u[2]

 du[3] = u[1]*u[2] - β*u[3]

end

Vector for our initial conditions

u0 = [1.0,0.0,0.0]

Define our parameters.

p = (10,28,8/3)

Define timespan to solve on + define ODE

using DifferentialEquations

tspan = (0.0,100.0)

prob = ODEProblem(lorenz!,u0,tspan,p)

Solving the ODE

sol = solve(prob)

Plotting the solution

using Plots

plot(sol)

2) PDEs Equations

- Overview

Limitations of ODEs:

ODE models are restricted as they involve derivatives with respect to one variable only. Indeed, our independent variable can be

time, but what if we also desired spacial coordinates too? Systems in our environement depend on many variables simultaneously,

therefore using ODE models means that we are simplifying models where the most important factor affecting our quantity of

interest is the only thing taken into account (strong assumption).

Solution: PDEs models

In contrast to ODEs, PDE models involve derivatives with respect to at least two independent variables, and they can be used to

describe the dynamics of your quantities of interest with respect to several variables at the same time.

Many of the important PDEs of mathematical physics can be derived from conservation principles such as conservation of energy,

conservation of mass, or conservation of momentum. A PDE is an equation that satisfies the conditions of having a function u

serving as the unknown of the equation & the equation involves partial derivatives of u with respect to at least two independent

variables. The order of a PDE is the degree of the highest derivative appearing in the PDE. Most PDEs used in science and

engineering applications are first- or second-order equations:

First-order PDEs:

Here, u = u(x, y) is the unknown function, x and y are the independent variables, ux = ux(x, y) and uy = uy(x, y) are the

partial derivatives of u with respect to x, and y, respectively, and F is some real function.

Second-order PDEs:

Amounts to adding second-order derivatives to the expression:

Solving PDEs:

Plot phase space diagram on the (x,y,z) plane

Automatically using continuous interpolation when plotting

plot(sol,vars=(1,2,3))

Plot with (t,y,z) plane with time component

#plot(sol,vars=(0,2,3))

Out[1]:

F(x, y,u,ux,uy) = 0

F(x, y,u,ux,uy,uxx,uxy,uyy) = 0

The general strategy of linearization (linear equations that approximate a given nonlinear equation). The general form

of a linear second-order PDE in two dimensions is:

Coefficients A to F are real numbers, which may depend on the independent variables x and y. Depending on the sign

of the discriminant d = AC − B2, linear second-order PDEs are called:

Elliptic if d > 0 (uxx + uyy +···= 0)

Contain second-order derivatives with respect to all independent variables, which all have the same

sign when they are written on one side of the equation.

Parabolic if d = 0 (uxx + ... = 0)

Involve one second-order derivative and at least one first-order derivative.

Hyperbolic if d < 0 (uxx − uyy +···= 0)

Similar to elliptic equations except for the fact that the second-order derivatives have opposite signs

when brought on one side of the equation.

- Initial and Boundary Conditions:

Like ODEs, PDEs are solved by an entire family of solutions unless initial or boundary conditions are imposed, which select one

particular solution among those many solutions. In fact, initial or boundary conditions are needed to make the mathematical

problem uniquely solvable. From the applications point of view, they are a necessary part of the description of the system that is

investigated. Rememeber, a well-posed differential equation problem satisfies the following conditions: existence, uniqueness,

stability. Here is a general rule for many equations:

Elliptic equation: add a boundary condition

Parabolic equation: add a boundary condition for the space variables and an initial condition at t = 0

Hyperbolic equation: add a boundary condition and two initial conditions at t = 0

- Closed form solutions:

Like ODEs, PDEs closed form solutions can be expressed in terms of well-known functions such as the exponential function and the

sine function, while the numerical approach is based on the approximate solution of the equations on the computer. Of course,

remember that closed form solutions cannot be obtained in most cases. As a matter of fact, due to the complex dynamics of PDEs,

they are often harder to solve in closed form than ODEs.

But, it is always a good idea to look for closed form solutions of differential equations since they may provide valuable information

about the dependence of the solution on the parameters of the system under investigation. Also, they can be used as a test of the

correctness of the numerical procedures. Classical methods like separation of variables and others may be used for PDEs.

- Numerical methods:

When solving PDEs, the use of numerical algorithms can be extremely expensive in terms of computation time and machine

requirements such as memory or processor speed requirements, which is currently a serious problem when computing large scale

Auxx + Buxy + Cuyy + Dux + Euy + F = 0

simulations. Thus, the reduction of computation time and machine requirements is an important issue in the solution of PDEs.

Many methods can be used to optimize the ressource used. But before that, analysing the symmetry and dimensionality of your a

problem is critical. Indeed, in order to reduce the computational effort, PDEs should always be solved using the lowest possible

dimension. Also, if the problem symmetry (rotational, mirror...) is optimal, computation time can be reduced.

Numerical methods for PDEs are discretization methods in the sense that they provide a discrete reformulation of the original,

continuous PDE problem. Many discretization approaches can be used, often adapted to specific types of problems. Generally,

PDEs are converted into 3 type of problems in order to represent functions and derivatives:

Linear systems: Ax = b find x.

Nonlinear systems: G(x) = 0 find x.

ODEs: u' = f(u,p,t), find u.

Hence, based on those methods, we often find four types of packages in the PDE solver pipeline. The first one are packages with

ways to represent functions as vectors of numbers and their derivatives as matrices. The second one are packages which solve

linear systems. Finally, the third and fourth ones are packages which solve nonlinear rootfinding problems and those who solve

ODEs directly. Now let us see the main methods:

1) Finite Difference Method

Easiest when computational domain is geometrically simple.

Similar to the idea of the Euler method

Transform a continuous mathematical equation (s) into an algebraic equation

We apply a replacement of the derivatives in the PDE by appropriate difference expression.

Important criterion for the selection of finite difference approximations: order of accuracy

Implicit vs explicit FD methods

1D vs 2D vs 3D

discretization of spatial derivatives vs temporal derivatives

2) Finite-Element Method

If computational domain is geometrically complex

FD method: lack of geometrical flexibility

FEM: computational domain is covered by a grid of approximation points that do not need regular arrangement

Grids are often made up of triangles or tetrahedra

Can be used to describe even very complex geometries.

Difference: The FD method approximates the equation and the FE method approximates the solution

Intuition: Replace the infinite-dimensional space by a finite-dimensional subspace.

FE method: transforms original PDE Equations into a system of linear equations (like FD method)

Choice of the Basis Functions important (ex: piecewise linear basis functions, piecewise polynomials...)

Solution of linear equation systems involving sparse matrices

Large sparse linear equation systems most efficiently solved with appropriate iterative methods

Main steps of the FE method done by software:

1) Geometry definition

2) Mesh generation

3) Weak problem formulation (Finite-dimensional approximation of the weak problem using the mesh)

4) Solution (linear equation system if weak problem or iterated linear equation systems if nonlinear/instationary)

5) Postprocessing (visualization...)

3) Others

Spectral method

Finite volume...

- Example 3:

Try multiple examples from this package: https://gridap.github.io/Tutorials/dev/

3) SDEs Equations

- Overview:

Used when system is described by differential equations that are influenced by random noise

Differential equation in which one or more of the terms is a stochastic process

Solution is then also modeled as a stochastic process.

SDEs contain variable(s) which represents random white noise

Often calculated as derivative of Brownian motion / Wiener process

Deterministic models: all model data are known and accurate.

Stochastic models: the data have a random or probabilistic component.

Important for dynamical system modeling

Scalar noise: same noise process is applied to all SDEs.

Diagonal noise: Every function in the system gets a different random number representing noise.

- Example 4: Lorenz System with additive noise

In []:

https://gridap.github.io/Tutorials/dev/

f(du,u,p,t): deterministic change vector of du

g(du2,u,p,t): stochastic vector du2 (du2*W is stochastic portion)

- VERY IMPORTANT LINKS:

https://www.youtube.com/watch?

v=riAbPZy9gFc&list=LL&index=26&ab_channel=ParallelComputingandScientificMachineLearning

https://www.youtube.com/playlist?list=PLwIFHT1FWIUJYuP5y6YEM4WWrY4kEmIuS

https://diffeq.sciml.ai/stable/

du = f(u, p, t)dt + g(u, p, t)dW

In [1]: using DifferentialEquations, Plots

function lorenz(du,u,p,t)

 du[1] = 10.0(u[2]-u[1])

 du[2] = u[1]*(28.0-u[3]) - u[2]

 du[3] = u[1]*u[2] - (8/3)*u[3]

end

function σ_lorenz(du,u,p,t)

 du[1] = 3.0

 du[2] = 3.0

 du[3] = 3.0

end

prob_sde_lorenz = SDEProblem(lorenz,σ_lorenz,[1.0,0.0,0.0],(0.0,10.0))

sol = solve(prob_sde_lorenz)

plot(sol,vars=(1,2,3))

Out[1]:

https://www.youtube.com/watch?v=riAbPZy9gFc&list=LL&index=26&ab_channel=ParallelComputingandScientificMachineLearning
https://www.youtube.com/playlist?list=PLwIFHT1FWIUJYuP5y6YEM4WWrY4kEmIuS
https://diffeq.sciml.ai/stable/

Lab 5 -- Hybrid models (SciML)

- Introduction:

Across this final laboratory, we will review the emerging methods that are used to mix knowledge-based models and empirical

models when modeling a system. Indeed, by merging theory based models with data science models, simulations can be

accelerated and science can better approximate systems. Hence, fusing a priori domain knowledge which doesn't fit into a

"dataset" allow this knowledge to specify a general structure that prevents overfitting, reduces the number of parameters, and

promotes extrapolatability, while still utilizing machine learning techniques to learn specific unknown terms in the model.

Here some of the main techniques & applications:

Data-driven physics-informed modeling

Physics-informed neural networks (PINNs)

Fluid Dynamics Simulations with Machine Learning

Material design with Machine Learning

Predicting Material Properties with Machine Learning

Generating realistic sample simulations with Generative Models

Scientific Knowledge Discovery

1) ANNs for solving ODEs & PDEs

- Overview:

Method for solving both ordinary differential equations (ODEs) and partial differential equations (PDEs)

Uses the function approximation capabilities of ANNs

Results in a diferentiable solution in a closed analytic format.

Parameters of the network are adjusted to minimize appropriate error function.

Model function as the sum of two terms:

First term satisfies the initial/boundary conditions and contains no adjustable parameters.

Second term involves a feedforward neural network to be trained so as to satisfy the differential equation.

Method overview:

Assuming a differential Equation

Subject to certain boundary conditions (B.C)

Use Collocation method to discretize the domain D and its boundary S into a set points Dˆ and S^

Problem is then transformed into system of equations subject to the constraints imposed by the B.Cs

We then build parametrized networks as the sum of 2 terms:

Term A containing no adjustable parameters and satisfies the boundary conditions

Term B employs neural network whose weights and biases are to be adjusted in order to deal with the minimization

Hence problem reduced from the original constrained optimization problem to an unconstrained one

Intuition to understand is that differential equations are solved using neural networks by representing the solution with universal

approximators and the training is done in order to satisfy the conditions required by equation.

In other words, we simply turn the solving condition into our loss function, then we perform optimization

Paper: https://arxiv.org/pdf/physics/9705023.pdf

https://arxiv.org/pdf/physics/9705023.pdf

- Physics-Informed Neural Networks (PINNs):

Data-driven solution

Data-driven discovery

Key property of PINNS is that they are said to require small data sets (positive in case of data scarcity)

LINK: https://maziarraissi.github.io/PINNs/

- Example:

Very good example: https://mitmath.github.io/18337/lecture3/sciml.html

3.034798185078377

In [2]: # Import Packages

using DifferentialEquations, Flux, Plots

Solving differential equation

k = 1.0

force(dx,x,k,t) = -k*x + 0.1sin(x)

prob = SecondOrderODEProblem(force,1.0,0.0,(0.0,10.0),k)

sol = solve(prob)

plot(sol,label=["Velocity" "Position"])

plot_t = 0:0.01:10

data_plot = sol(plot_t)

positions_plot = [state[2] for state in data_plot]

force_plot = [force(state[1],state[2],k,t) for state in data_plot]

Generate the dataset

t = 0:3.3:10

dataset = sol(t)

position_data = [state[2] for state in sol(t)]

force_data = [force(state[1],state[2],k,t) for state in sol(t)]

Initial model
NNForce = Chain(x -> [x],

 Dense(1,32,tanh),

 Dense(32,1),

 first)

Initiate loss function + regularization term for assumption (Hooke's law)

loss() = sum(abs2,NNForce(position_data[i]) - force_data[i] for i in 1:length(position_data))

loss()

random_positions = [2rand()-1 for i in 1:100] # random values in [-1,1]

loss_ode() = sum(abs2,NNForce(x) - (-k*x) for x in random_positions)

loss_ode()

λ = 0.1

composed_loss() = loss() + λ*loss_ode()

Training

opt = Flux.Descent(0.01)

data = Iterators.repeated((), 5000)

iter = 0

cb = function () #callback function to observe training

 global iter += 1

 if iter % 500 == 0

 display(composed_loss())

 end

end

display(composed_loss())

Flux.train!(composed_loss, Flux.params(NNForce), data, opt; cb=cb)

Result plot

learned_force_plot = NNForce.(positions_plot)

plot(plot_t,force_plot,xlabel="t",label="True Force")

plot!(plot_t,learned_force_plot,label="Predicted Force")
scatter!(t,force_data,label="Force Measurements")

https://maziarraissi.github.io/PINNs/
https://mitmath.github.io/18337/lecture3/sciml.html

0.0008168632915723245
0.0007698874594121209
0.0007276690946864802
0.0006895239733254194
0.0006548975478832112
0.0006233302494927957
0.0005944392755571842
0.0005679017699056735
0.0005434474944889068
0.0005208455683277699

2) Other Methods

- Neural ODEs:

Discrete sequence of hidden layers vs parameterizing derivative of hidden state with neural network.

Paper: https://arxiv.org/pdf/1806.07366.pdf

Very good explanation: https://www.youtube.com/watch?v=uPd0B0WhH5w&ab_channel=AndriyDrozdyuk

Adjoint state ODE method (need better comprehension)

Universal Differential Equations Paper: https://arxiv.org/pdf/2001.04385.pdf

- Deep Hidden Physics Models:

To read: https://arxiv.org/abs/1801.06637

- SINDy:

Sparse identification of nonlinear dynamics

Autoencoder model enabling discovery of reduced coordinates from high-dimensional data

Read: https://www.pnas.org/content/116/45/22445

- Deep Generative Modeling for simulations:

Paper: https://arxiv.org/abs/2008.03833 (Deep Generative Models for Galaxy Image Simulations)

Out[2]:

https://arxiv.org/pdf/1806.07366.pdf
https://www.youtube.com/watch?v=uPd0B0WhH5w&ab_channel=AndriyDrozdyuk
https://arxiv.org/pdf/2001.04385.pdf
https://arxiv.org/abs/1801.06637
https://www.pnas.org/content/116/45/22445
https://arxiv.org/abs/2008.03833

